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Heart diseases constitute a global health burden, and the problem is exacerbated by the error-prone
nature of listening to and interpreting heart sounds. This motivates the development of automated
classification to screen for abnormal heart sounds. Existing machine learning-based systems achieve
accurate classification of heart sound recordings but rely on expert features that have not been
thoroughly evaluated on noisy recordings. Here we propose a segmental convolutional neural net-
work architecture that achieves automatic feature learning from noisy heart sound recordings. Our
experiments show that our best model, trained on noisy recording segments acquired with an ex-
isting hidden semi-markov model-based approach, attains a classification accuracy of 87.5% on the
2016 PhysioNet/CinC Challenge dataset, compared to the 84.6% accuracy of the state-of-the-art
statistical classifier trained and evaluated on the same dataset. Our results indicate the potential of
using neural network-based methods to increase the accuracy of automated classification of heart
sound recordings for improved screening of heart diseases.

1. Introduction

Heart diseases constitute a significant global health burden. Just one subset of these dis-
eases, valvular heart disease (VHD) resulting from rheumatic fever, causes 300,000-500,000
preventable deaths each year globally, primarily in developing countries.1,2 Early detection
of many heart diseases is crucial for optimal treatment management to prevent disease pro-
gression.3,4 In developing countries, the standard practice for screening of heart diseases such
as VHD and cardiac arrhythmia is cardiac auscultation to listen for abnormal heart sounds.
Patients found to have suspicious abnormalities are then referred to specialists for proper
diagnosis by a much more expensive echocardiographic procedure.3 Although cardiac auscul-
tation has been replaced by echocardiography for screening in industrialized countries, the
cost-effectiveness and procedural simplicity of auscultation make it an important screening
tool for primary care providers and clinicians in under-resourced communities.5,6

The main challenge in cardiac auscultation is the difficulty of detecting and interpreting
subtle acoustic features associated with heart sound abnormalities. Manual classification of
heart sounds suffers from high intra-observer variability,?,7–13 causing false positive and false
negative results. Much work has been done in trying to improve screening accuracy, including
efforts to design devices to record heart sounds and automatically classify them. However,
the biggest challenge for this task remains in developing an accurate classifier for heart sound

∗This work was finished in May 2016, and remains unpublished until December 2016 due to a request from
the data provider.
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recordings, which are often obtained in noisy environments. Here, we propose a novel approach
based on segmental convolutional neural networks to classification of heart sound recordings.
Our approach achieves automatic feature learning together with accurate prediction of the
abnormality. On noisy recordings, this approach outperforms prior classifiers using a state-of-
the-art feature set developed for noiseless recordings.

The rest of this paper is organized as follows. In Section 2, we discuss related previous
research. In Section 3, we introduce the methods that we used to classify noisy heart sound
recordings, including preprocessing of data, the use of traditional classifiers, and our segmental
convolutional neural network models. Next, in Section 4, we present the performance of our
classifiers, along with our analysis of these results. We discuss the limitations of our work and
future directions in Section 5 and conclude our work in Section 6.

2. Related Work

The first step in automatic classification of heart sounds is segmentation of the recordings
along heartbeat cycle boundaries. Segmentation divides the heart sound signal into cycles
of four parts: the first heart sound (S1), systole, the second heart sound (S2), and diastole.
Past efforts in the field include the use of envelope-based methods14,15 and machine learning
techniques.16,17 A recent segmentation algorithm proposed by Schmidt et al has been shown
to work well on a large dataset of 10,172 heart sound recordings, and achieved an average
of 95.63% F1 score, easily outstripping all other methods evaluated with the same set of
recordings in the literature.18,19 This hidden semi-Markov model (HSMM)-based model was
tested on noisy, real-world recordings and considered state-of-the-art. Therefore, we employed
the algorithm as-is to acquire the segmentation of input recordings.

Previous work in heart sound recordings classification follows the traditional paradigm of
using hand-crafted feature sets as input to automatic classification based on machine learning.
Features are typically a mixture of time domain properties, frequency domain properties,
statistical properties, and transform domain properties such as from the discrete wavelet
transform (DWT) or empirical mode decomposition (EMD).20 The extracted features are then
fed to different machine learning methods, which are then trained to recognize abnormal heart
sounds, or in some cases to classify the recordings into the specific heart diseases. The most
common methods are artificial neural networks (ANNs),21 support vector machines (SVMs),22

Hidden Markov models (HMM),23 and k-nearest neighbors (kNN).24 However, prior results
have been restricted by the use of small or otherwise limited data sets, including exclusion of
noisy recordings or manual curation of recordings. While classifiers have been reported with
accuracies over 90%,? there is insufficient evidence to conclude whether the expert features
used with these classifiers are fully applicable to noisy heart sound recordings. We address this
issue by training and testing traditional classifiers on a newly published set of noisy recordings.

In addition, our work is inspired by numerous recent work on the application of neural
networks to the processing of sensory-type data, such as visual?,25,26 and speech recognition.?

However, our segmental convolutional neural network approach is substantially different from
these work in its use of heart sound segments during training and test time. Meanwhile, we
also empirically evaluated two different types of network architectures and tried to explain
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their effectiveness via visualizations of learned filters and hidden layers.

3. Methods

The heard sound recordings used in our experiments were obtained from a publicly hosted
dataset? for the 2016 PhysioNet/Computing in Cardiology Challengeb. This dataset consists
of approximately 3000 recordings obtained with a variety of durations, noise characteristics,
and acoustic features. Cardiac conditions featured in the recordings include valvular heart
diseases, benign murmurs, aortic disease, and arrhythmias. Recordings in the dataset were
collected from different locations on the body of both children and adults. Given the uncon-
trolled environment, many recordings are corrupted by various noise sources, such as talking,
stethoscope motion, breathing and intestinal sounds, which comprise the challenge of learning
features and classifying the signals. As the dataset is intended to support the development
of classification systems for initial screening of heart diseases, recordings were only labeled as
normal or abnormal, depending on whether follow-up for further diagnosis was recommended
from the recording. At the time of our work, recordings excessively corrupted by noise had
not yet been relabeled as unclassifiable by challenge organizers, therefore our experiments
were focused on binary classification between normal and abnormal noisy recordings, which
respectively constituted 80% and 20% of the public dataset.

We split the dataset into a 90% training set for classification model development and a 10%
testing set for model evaluation. In the absence of prior probabilities for disease prevalence, we
constructed the test set to be balanced between normal and abnormal recordings for clearer
interpretability of performance metrics. As a result, 17% of the recordings in the training
set were abnormal and the remaining 83% were normal. We preprocessed the recordings and
then used them for two independent branches of investigation: traditional classification with
feature selection, and the use of a new segmental convolutional neural network architecture.
We compared the test set performance of the results of these two investigations by calculating
sensitivity, specificity, and accuracy, as these metrics are standard in prior work on heart
sound classification. For completeness, we also compared area under the Receiver-Operating
Characteristic (ROC) curve and positive predictive value.

3.1. Preprocessing

As a first step, we preprocess the recordings to handle noise and segment individual heart-
beats. As stated in the related work section, we employ a recent HSMM-based segmentation
algorithm developed for noisy heard sound recordings, which has been reported to achieve an
accuracy of 95% on a benchmark dataset.

Since the signals were recorded from multiple sources and differ widely in levels of back-
ground noise, we identify the handling of noise within the data crucial for the success of
downstream components. We explore a few common venues for denoising in the heart sound
recordings and general signal processing, including techniques based on discrete wavelet trans-
form (DWT)27 and empirical mode decomposition (EMD). In wavelet-based denoising, the

bThe data was obtained from the website: https://physionet.org/challenge/2016/
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signal is reconstructed from thresholded components produced with DWT using multi-level
wavelet coefficients. This approach is finally used in our experiments, given its ease of imple-
mentation.

As the noise selection and reduction can vary widely across the multiple data sources and
individual cases, we also integrate the denoising results as a feature in traditional classification
methods by calculating the signal-to-noise (SNR) of the individual recordings.

3.2. Traditional Machine Learning-based Classifiers

We investigated the performance of various machine learning-based classifiers with hand-
designed features on noisy heart sound recordings. Through this investigation, we would like
to understand: 1) the contribution of different hand-designed features for the classification
of noisy heart records; and 2) the overall performance of traditional approaches on this new
dataset.

3.2.1. Features

We attempt to implement features from a published study for classifying minimal-noise record-
ings as either normal or abnormal with extraction of 23 features and subsequent selection
of 5 features.28 Per recording, we extract a set of 58 time-domain, frequency-domain, and
transform-domain features which together constituted a superset of the 23 published features,
as shown in Table 1. All features are represented by the mean and standard deviation over all
heart beat cycles in the recording. To achieve better results, we transform and combine some
features as ratios. Some frequency domain features have missing values due to anomalous
recording content.

Table 1. Features extracted for traditional classification.

Overall Feature Type Feature Type Number of Features

Time Domain

Interval Length 16
Absolute Amplitude 5

Total Power 5
Zero Crossing Rate 1

Amplitude at Peak Frequency 5

Frequency
Domain

Peak Frequency 5
Bandwidth 9
Q-Factor 9

Total Harmonic Distortion 1
Transform
Domain

Cepstrum Peak Amplitude 1
Signal-to-Noise Ratio from DWT 1

3.2.2. Models

We employ different statistical models to perform supervised learning from the dataset. Before
training, we impute all the missing data using median values across all training examples.
We perform 10-fold cross validation to evaluate model performance on our 90% imbalanced
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training data set. To alleviate classifier bias in learning one class over the other, we follow
the standard procedure to increase the weights of classification errors of abnormal recordings.
We also use 10-fold cross validation for tuning classifier hyperparameters to improve model
performance. Our models and corresponding hyperparameters are shown in Table 2.

Table 2. Hyperparameters tuned for the investigated classification models.

Classification Model Tuning Parameters

Logistic Regression -
Lasso, Ridge Based Methods regularizing/penalizing term

Support Vector Machine kernel function, cost, gamma
Decision Trees number of trees

Random Forests number of estimators, number of features
K-Nearest Neighbours number of neighbours

We use forward stepwise, backward stepwise, and Lasso regression methods for feature
selection. We use features selected by the forward stepwise and Lasso methods for training the
logistic regression classifier and Lasso-selected features for training the remaining classifiers.
For the Lasso method, we optimize the regularization/tuning parameter lambda and select
features using the lambda value that minimizes the misclassification error rate.

3.3. Segmental Convolutional Neural Networks for Heart Sound
Classification

Traditional classifiers are simple to employ and fast to train, but rely on hand-designed features
that do not necessarily capture useful signals in the recordings. An alternative to traditional
classifiers is models that can automatically learn useful features that are not limited by human
design. Among these models, convolutional neural network (CNN) provides a flexible filter-
based architecture to capture the patterns in the sensory-type data. However, heart sound
signals vary in length significantly, and often contain noise that makes a certain snippet of
signal unclassifiable. These make the adoption of CNN models less straightforward.

…

Input
Signal

CNN 
Unit

Training Time Test Time

…1 0 1

…
0 / 1

Fig. 1. Training and evaluation of the segmental convolutional neural networks.

We propose a segmental convolutional neural network architecture to solve these problems.
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As shown in Fig. 1, our method takes raw heart sound recordings as input, and acquires
recording segments by using the hidden semi-markov model described in Section 3.1. Then we
only keep segments with lengths from 400 to 1200 and zero-pad all signals into a 1200-element
vector. During training time, this preprocessing step keeps 98% of all segments and leaves
us with 76509 training segments. We then cast these training segments as a new training
set to train our CNN units. During test time, we first split each test signal into segments
and then classify each segment using our trained CNN unit. Then we combine the segment
classifications and classify a recording as abnormal only when the proportion of segments
classified as abnormal is over a threshold. We treat this threshold value as a hyperparameter.

This approach has three key advantages. First, since standard CNN requires fixed-length
input, this naturally solves the input length normalization issue. Second, expanding signals
into segments substantially increases the number of training instances, which has been proved
to be critical in the success of other applications of neural networks. Third, global classification
of a recording is more robust against accidental noise in the data, as accidental noise can only
influence the classification of a small portion of local segments.

Filter configuration and depth are two major factors that influence the performance of
a CNN model. It remains unclear which type of architecture is more suitable to this task.
Therefore, we now discuss the use of two different architectures for CNN units, which we
name Filter-focused CNNs and Depth-focused CNNs respectively. These two architecture types
differ mainly in their configuration of filters, the way max-pooling is conducted, and the way
different layers are stacked.

3.3.1. Filter-focused CNN (FCNN)

Heart Sound 
Recording

Vector 
Representation

Feature 
Maps

Hidden 
Representation

Output 
Probabilities

Discretization Convolution Max-pooling Fully-connected + 
Softmax

Fig. 2. Architecture of a FCNN model.

Fig. 2 visualizes the architecture of a FCNN model. In a FCNN model, a heart sound
segment will first be represented as a vector x, with each element in x representing the nor-
malized amplitude of the signal at that time point. The core parameters of the network are
a set of filters with different window sizes that will be applied to the input signal x. Given a
specific window size w, a filter is a vector of size w f = [f1, f2, ..., fw], where each fi is a scalar.
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A feature map m of this filter can be obtained from the application of a 1D-convolutional
operator on f and x to produce an output sequence m = [m1,m2, ...,mn−w+1] where n is the
length of input signal x:

mi = g(

w−1∑
j=0

fj+1xj+i + b)

where b is a bias term and g is a non-linear function. This convolution process is repeated for
many filters of different window sizes w. After the convolution layer, a max-over-time pooling
operation is applied to each feature map mk to generate a single scalar activation hk:

hk = max([mk
1,m

k
2, ...,m

k
n−w+1])

And then all activations hk are concatenated to form a size-N hidden representation of the
original signal h = [h1, h2, ..., hN ]. The idea behind the max-over-time pooling operation is to
only keep the most obvious activation that are generated by the convolution, and use that to
characterize the signal for the downstream classification.

Finally, the hidden representation h is fed into a fully-connected with softmax layer to
generate the class probabilities y. We use cross entropy between predicted labels and ground
truth labels as loss function. The intuition behind the use of many filters of various window
sizes is that the model should be able to learn through back-propagation common patterns
that it has seen in the training signals that are useful for the classification, and these patterns
could potentially be numerous and of different scales.

3.3.2. Depth-focused CNN (DCNN)

Heart Sound 
Recording

Vector 
Representation

Final 
Representation

Output
Probabilities

Discretization Convolution Max-pooling Softmax

…..

Condensed 
Representation

Repeated 
Layers

Hidden 
Representation

Fully-connected

Fig. 3. Architecture of a DCNN model.

While large filters of various sizes can help to capture useful patterns of different scales, it
may also be useful to have a model with only small filters at each layer but focuses on stacking
many layers together to form a deep architecture, as has been found in visual recognition
tasks.26 Fig. 3 visualizes the architecture of a Depth-focused CNN model. There are three
major differences between DCNNs and FCNNs. First, the filter sizes in DCNNs are much



8

smaller than in FCNNs. Typically, the size of DCNN filters are approximately 10, while the
size of FCNN filters can range from 10 to 500. The use of very small filters in DCNNs reduces
the computational cost to perform convolutional operations and thus enables us to explore
deeper models while still capturing useful patterns in the signals. Second, in DCNNs, the
motif of a convolution layer followed by a max-pooling layer is repeated several times to
form a hidden representation of the original signal. Then this hidden representation is fed
into multiple stacked fully-connected layers to reduce the representation size, after which the
softmax layer generates the output probabilities.

Finally, the way convolution and max pooling are conducted is different. In a DCNN
convolution layer, the output of convolution operation is a feature matrix m = [m1,m2, ...,mn],
where each column mi is the feature map vector obtained from filter fi convolved with signal
x, and can be viewed as a “channel” in the output signal. Then at the pooling layer, instead
of doing a max-over-time pooling, a max pooling over the local time region is performed, and
channels are kept. For example, a max-pooling operation with window 2 is:

m̂c
i = max(mc

2i,m
c
2i+1)

where m̂c represents the pooling output column in channel c, and mc represents the channel c
column in the feature matrix. Here, the max pooling serves as a sub-sampling over the signal
and preserves more information compared to the max-over-time pooling operation in FCNN.

3.3.3. Network Configurations

We design experiments to evaluate our segmental convolutional neural network approach.
Table 3 shows the CNN architectures that we report results on. We explored a lot different
architectures and included results for these models because: First, these models demonstrate
progressively increasing filter sizes and network depths, enabling comparison of the effects
of different network configurations on final performance; Second, the training times of these
models are tolerable given the resources we have. In the table, “Conv” represents a convolution
layer, “MP” a max-pooling layer, and “FC” a fully-connected layer. For instance, for FCNNs,
“Conv([50-500,50]*20)” represents a convolution layer with window size ranging from 50 to
500 with a step of 50, and each window size corresponds to 20 different filters. For DCNNs,
“Conv([10*25])” represents a convolution layer with 25 filters and window size 10.

Table 3. CNN network configurations.

CNN Model Architecture Configuration # Layers # Filters

FCNN-Small Conv([50-500,50]*20), MP, FC 3 200
FCNN-Medium Conv([25-500,25]*30), MP, FC 3 600

FCNN-Large Conv([20-600, 20]*50), MP, FC 3 1500
DCNN-Shallow Conv([10]*25), MP, Conv([10]*50), MP, FC(256), FC 6 75

DCNN-Deep Conv([10]*25), MP, Conv([10]*50), MP, Conv([10]*50), MP, FC(256), FC 8 125

For all CNN configurations, we use L2 regularization on the weights and dropout29 before
the last softmax layer to regularize the model. We use AdaGrad30 to train the models with error
backpropagation. We train each model on a 90% subset of our training set for 50 epochs, and
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after each epoch we evaluate the model on the remaining 10% validation subset of our training
set. For each CNN configuration, we save the model that generates the best accuracy on the
validation set as the final model. This allows us to prevent the final model from overfitting
on the training data. We then evaluate the best model from each CNN configuration on the
same test set as used by the traditional classifiers.

4. Results

4.1. Traditional Classifiers

Table 4 compares the performance of the traditional classification models. We evaluated model
performance based on accuracy, specificity, sensitivity, positive predictive value (PPV), and
area under the receiver operating characteristic curve (AUC). The receiver operating char-
acteristic (ROC) curves for all models are shown in Fig. 4. Weighting and feature selection
significantly improved performance of most methods except decision trees. Overall, we saw
that SVM with feature selection was the best performing model. However, the accuracy of
this model on noisy recordings was lower than the published accuracies of models using the
same feature set on low-noise recordings, which exceeded 90% with feature selection.28

Table 5 summarizes the features selected by our models. Contrasting with the previous
work which found that four time-domain features and one frequency-domain feature were suffi-
cient for accurate classification of low-noise recordings,28 we found that accurate classification
of noisy recordings required additional frequency-domain and transform-domain features.

Table 4. Results for different traditional classification models on the test set. The numbers
in parentheses show the baseline performances of the models, whereas those outside show per-
formances after model improvement, namely weighting, parameter tuning, and feature selection.

Classifier Accuracy (%) Specificity (%) Sensitivity (%) PPV (%) AUC (%)

SVM 84.6 (69.2) 92.2 (68.3) 78.3 (56.2) 89.2 (63.4) 83.4 (55.4)
Logistic Regression 75.4 (49.5) 74.3 (62.4) 75.1 (50.2) 74.3 (55.4) 81.3 (65.4)

Random Forests 71.4 (65.4) 91.3 (68.2) 72.3 (65.4) 81.3 (71.3) 88.4 (71.4)
KNN (k=3) 60.3 (56.1) 92.2 (65.3) 60.7 (57.6) 82.4 (79.4) 71.3 (65.4)
Naive Bayes 70.4 (53.4) 60.3 (56.7) 71.5 (53.3) 71.5 (60.6) 77.7 (62.3)

Decision Trees 73.3 (73.6) 88.4 (88.6) 73.4 (73.6) 85.5 (85.5) 69.4 (58.6)

Table 5. Feature selection results.

Feature Type Number of Features

Time Domain 5
Frequency Domain 6
Transform Domain 2

4.2. Segmental Convolutional Neural Networks

Table 6 shows the results of different segmental convolutional neural network models on the
test set, with the model names corresponding to configurations in Table 3. Overall, our DCNN-
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Fig. 4. ROC curves for classification models.

Deep model produces the best accuracy, specificity and PPV results, while our DCNN-Shallow
model produces the best sensitivity. For FCNN models, as filter number increases, we observed
an increase in all metrics except sensitivity. This suggests that, in FCNN models, a larger
number of filters with more fine-grained window sizes can help the model capture more patterns
in the signals, which aligns well with our intuitions. It is worth noting that the FCNN-Large
model already produced a relatively high accuracy, and the highest sensitivity value. For
DCNN models, as the number of layers increases, we observe increases in almost all metrics
(except sensitivity), which suggests that deeper models with more layers can help the model
learn better patterns in the signals, which aligns with our assumptions.

In addition, compared to FCNN models, we observed that DCNN models almost always
perform better, which suggests that a deep model with small filter sizes and few filters at
each layer is more expressive in modeling the heart sound signal data than a shallow model
with a large number of filters. However, in terms of sensitivity, we also discovered that the
performance does not change much as the filter number and layer number increase. In other
words, most of the gain in accuracy comes from the gain in specificity.

Table 6. Classification results for different CNN configurations, with SVM for
comparison.

CNN Model Accuracy (%) Specificity (%) Sensitivity (%) PPV (%)

FCNN-Small 81.2 72.9 89.2 77.0
FCNN-Medium 83.4 78.1 88.6 80.5

FCNN-Large 85.3 80.0 90.5 82.2
DCNN-Shallow 86.9 83.2 90.5 84.6

DCNN-Deep 87.5 88.4 86.7 88.4
SVM 84.6 92.2 78.3 89.2

4.3. CNN Visualizations

To understand how the segmental convolutional neural networks work, we plot visualizations
of randomly selected heart sound segments in the training dataset and filters learned by
the FCNN-Small model in Fig. 5. The input segments have very different shapes, and noise is
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observable in some segments. This suggests the difficulty of the classification task. In addition,
the visualization of filters shows that the network learned very good waveform-like patterns
from the training data. This is even more convincing, considering the fact that all filters
were randomly initialized prior to training. This qualitative result aligns very well with our
intuitions about why CNN models are suitable for heart sound classification.

(a) (b)

Fig. 5. (a) Visualization of randomly chosen segments in the training data; (b) Visualization of learned filters
(window size 200) by FCNN-Small model.

Fig. 6 shows the network activations for normal and abnormal input segments. We find
that, given the input segment, some of the output neurons in convolution layers activate,
which indicates a pattern matched strongly with the signal at that local region, while others
do not activate. Moreover, we find that more neurons in both the convolution layers and
hidden layer are activated by abnormal segments compared to normal segments, indicating
that many learned filters in the network are patterns of abnormal signals.

conv1
activations

final
representation

input
segment

(a)

conv1
activations

final
representation

input
segment

(b)

Fig. 6. Visualization of network activations for (a) a normal heart sound segment and (b) an abnormal
segment. All activations are from DCNN-Deep model, and only activations in the first convolution layer and
the final hidden layer are shown. Red color represents an activation value of 1, while blue color represents an
activation value of 0.
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4.4. Comparison

We compared the performance of the best performing CNN architectures, namely DCNN-
Large and FCNN-Deep, to SVM, which was the best performing model among the traditional
classifiers (Table 6). We see that CNNs outperform SVM significantly for accuracy and sen-
sitivity. While FCNN-Deep has marginally better specificity, DCNN-Large has better perfor-
mance in terms of accuracy and sensitivity. Our results show that application of CNNs to
noisy heart sound recordings can produce better classification as compared to applying tra-
ditional classification techniques. Due to time limits, we were not able to fully explore the
architecture space of the CNN models. Therefore, we believe that our segmental convolutional
neural network approach has even more potential in classifying heart sound recordings than
we have found.

5. Discussion

Our investigation of the applicability of previously published work in traditional classification
to noisy heart sound recordings suggests that further evaluation is needed. We found significant
differences from feature extraction and classifier performance results reported from one such
study, which justifies more rigorous scrutiny of previous work. Specifically, it would be useful
to verify that feature extraction and traditional classification does indeed perform better on
a dataset of clean heart sound recordings.

Due to limits of computing resources, we have not yet fully realized the potential of our
CNN models. We believe that better-performing models with more filters and more layers
can be achieved by doing a more thorough hyperparameter search. Another clear avenue of
exploration is to decompose the signals further with EMD, which has been shown to delineate
signals and noises of different origins in heart sound recordings.19 We would like to examine
how splitting a recording into EMD components for use as separate input channels to our
segmental CNNs may increase classification accuracy.

Limited by the annotation in the training data, our work is focused on the binary clas-
sification of heart sound recordings into normal and abnormal categories. However, it is also
practically useful to predict a third “unclassifiable” category, especially when noise is domi-
nant in the heard sound recordings. For example, in real world applications, this third label
can serve as a signal for human intervention. Therefore another direction for future work is to
explore the combination of supervised and unsupervised approaches to produce this “unclas-
sifiable” label accurately.

6. Conclusion

We propose a segmental convolutional neural network approach to accurately classify noisy
heart sound recordings. We studies the effectiveness of two different types of convolutional
neural network architectures, and compare their results with the application of traditional
statistical classifiers on a set of manually curated features. Our results suggest that: First,
traditional statistical classifiers using feature sets developed for low-noise recordings may
perform worse on noisy recordings. Second, segmental convolutional neural networks with
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deep architectures and small filters can achieve higher accuracy in classifying noisy heart
sound recordings without relying on manually-curated feature sets.
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