
Milestone Report: Rendering Dye Advection in Three-
Dimensional Fluids

Ethan Li
CS 148 (Summer 2016) Final Project

August 2, 2016

Table of contents

1 Summary . 1

2 Milestone 1 . 1

2.1 Mathematics . 2
2.1.1 Summary of the Navier-Stokes Equations . 2
2.1.2 Computing Transport of Fluid Velocity . 2

Adding Forces . 3
Advection . 3
Di�usion . 3
Projection . 4

2.1.3 Computing Transport of Dye . 4
2.1.4 Discretizing the System on a Grid . 4

2.2 Implementation . 5
2.3 Preliminary Performance Pro�ling . 7

3 Milestone 2 . 7

3.1 Colors . 7
3.2 Extension to Three Dimensions . 8

4 Summary . 9

Bibliography . 9

1 Summary

This report discusses my achievement of Milestone 1 and my ongoing progress in Milestone 2.

Milestone 1 focuses on achieving a basic implementation of the simulation software. Milestone 2 focuses on
upgrading the complexity of the �uid model for better visuals. Milestone 3 focuses on improving the accuracy
of the simulation algorithm. Milestone 4 (previously proposed as part of Milestone 2) focuses on providing
user interactions with the �uid model. Milestone 5 focuses on visual re�nement producing some animation
renders using the software. Optional Milestone 6 focuses on improving �uid rendering for better visuals.
Optional Milestone 7 focuses on porting the �uid simulation to fragment shaders, potentially providing a
performance boost over the CPU or at least tolerable performance in WebGL.

2 Milestone 1

This milestone consists of:

1. Understanding the mathematics underlying �uid dynamics simulation su�ciently well to implement
�uid simulation algorithms.

1

2. Reimplementing Jos Stam's Stable Fluids algorithm to work in C++ with the Eigen linear algebra
library and the programmable OpenGL pipeline

2.1 Mathematics

The summary of mathematics in this subsection is a review of Jos Stam's work on his Stable Fluids algorithm
([4] and [5]), Dan Morris's notes on Stam's original work [1], and Mark Harris's discussion of Stam's work [2].

2.1.1 Summary of the Navier-Stokes Equations

The Navier-Stokes equations model �uid �ow. The equations describing the evolution over time of velocity
u~ and pressure p can be formulated as follows:

r�u~ = 0 (1)
@ u~
@t

= ¡(u~ � r)u~ ¡ 1
�
rp+ �r2u~ + f~ (2)

where � is kinematic viscosity, � is �uid density, and f~ is an external force. In three dimensions, recall that

rp=

0BBB@
@p

@x
@p

@x
@p

@x

1CCCA (gradient), r�u~ = @ux
@x

+
@uy

@y
+

@uz
@z

(divergence), and r2u~ = @2ux
@x2

+
@2uy

@y2
+

@2uz
@z2

(Laplacian).

Equation 1 corresponds to conservation of mass for an incompressible �uid. Equation 2 consists of terms
capturing the advection of velocity, or the transport of velocity along the velocity �eld; generation of velocity
by pressure di�erences, which is zero for incompressible �uids; di�usion of velocity, or the dissipation of
movement; and forces applied to the �uid. Note that the �rst term is non-linear in u~ , which makes the
Navier-Stokes equations di�cult to solve. With Neumann boundary conditions, the velocity �eld at system
boundaries @D should have a perpendicular component of zero.

The scalar �eld � of the density of dye in the �uid (or indeed of any other quantity of the �uid) can then
be modeled as follows:

@�
@t

=¡(u~ � r) �+�r2 �+S (3)

where � is the di�usion constant of the dye. Similarly to the terms in equation 2, these terms capture
advection of dye, di�usion of dye, and an external source of dye. Note that the transport of distinct substances
can modeled with additional scalar �elds, di�usion constants, and equations.

Then �uid dynamics simulation is a matter of developing and using some numerical method to compute the
transport of �uid velocity and dye density according to these equations at successive time steps.

2.1.2 Computing Transport of Fluid Velocity

Given initial conditions u~ (0)=u~ (x~ ; 0), we wish to compute u~ (x~ ; t+�t) from u~ (x~ ; t).

Stam presents an unconditionally stable implicit method for accomplishing this task. A key element of this
method is the application of the Helmholtz-Hodge Decomposition to enforce equation 1. Any vector �eld w~
can be decomposed (by Helmholtz-Hodge) into

w~ =u~ +rp (4)

2

where r � u~ = 0 and p is a scalar �eld. Then u~ can be computed as the projection P of w~ , such that
u~ =Pw~ . P is de�ned from applying r to equation 4 as r�w~ =r�u~ +r2p=r2p (the Poisson equation for
p with Neumann boundary conditions); then solving the Poisson equation r � w~ =r2p for p given w~ gives
P w~ = w~ ¡ rp. Equation 1 gives P u~ = u~ ; and rp= 0~ +rp gives Prp = 0~ . Then applying projection to
equation 2 results in a single equation for the evolution of velocity, the Poisson-pressure equation:

@ u~

@t
=P (¡(u~ � r)u~ + �r2u~ + f~)

So temporary introduction of nonzero r�u~ (in violation of equation 1) by simulation computations, namely
adding f~ , advecting, and di�using (in that order) resulting in intermediate computation result w~ , can be
corrected by applying a projection to w~ afterwards. Then we compute u~ (x~ ; t+�t) from u~ (x~ ; t) as follows:

w~ (0)(x~ ; t+�t) u~ (x~ ; t)

w~ (1)(x~ ; t+�t) Add Forces Tow~ (0)(x~ ; t+�t)

w~ (2)(x~ ; t+�t) Advectw~ (1)(x~ ; t+�t) alongw~ (1)(x~ ; t+�t)

w~ (3)(x~ ; t+�t) Di�usew~ (2)(x~ ; t+�t)

w~ (4)(x~ ; t+�t) Projectw~ (3)(x~ ; t+�t)
u~ (x~ ; t+�t) w~ (4)(x~ ; t+�t)

where w~ (i)(x~ ; t+�t) are temporary intermediate computation results in the current simulation step.

Adding Forces

We assume constant forces with respect to time in any given timestep at the time scale of �t. If the forces
for the current timestep �t are given by f~(x~ ; t+�t), then

w~ (1)(x~ ; t+�t) w~ (0)(x~ ; t+�t)+�t f~(x~ ; t+�t)

Advection

Stam uses the method of characteristics from PDE theory in order to stably solve the advection step.
Intuitively, this can be summarized as calculating the new velocity w~ (2)(x~ ; t+�t) for a virtual particle at x~
as the velocity w~ (1)(s~ ; t+�t) at the location s~(x~ ;¡�t) obtained by tracing that virtual particle at x~ back
in time by �t along w~ (1)(x~ ; t+�t). Because this approach relies on tracing the �ow of virtual particles, it
is considered semi-Lagrangian. In general, we have

w~ (2)(x~ ; t+�t) w~ (1)(Tracex~ Alongw~ (1)(x; t+�t)and¡�t; t+�t)

If we use the �rst-order approximation s~(x~ ;¡�t)�x~ ¡w~ (1)(x; t+�t)�t, then we have

w~ (2)(x~ ; t+�t) w~ (1)(x~ ¡w~ (1)(x; t+�t)�t; t+�t)

Note also that if u~ is discretized on a rectangular grid, then s~(x~ ; ¡�t) can be trilinearly interpolated (or
bilinearly interpolated in a two-dimensional grid) from velocities at the eight (or four in a two-dimensional
grid) nearest grid points.

Di�usion

3

Stam uses an implicit method to solve the di�usion equation for velocity, @w~
(2)

@t
= �r2w~ (2):

(I ¡ ��tr2)w~ (3)(x~ ; t+�t)=w~ (2)(x~ ; t+�t) (5)

where I is the identity operator. If r2 is discretized, then I can also be represented as the identity matrix,
and we can solve this equation as a sparse linear system for w~ (3)(x~ ; t+�t).

Projection

To project w~ (3)(x~ ; t+�t), we use a Poisson solver to solve r2p=r �w~ (3)(x~ ; t+�t) for p, so that

w~ (4)(x~ ; t+�t) w~ (3)(x~ ; t+�t)¡rp

Note that, if u~ is discretized on a rectangular grid, thenr2p=r�w~ (3)(x~ ; t+�t) is also a sparse linear system.

2.1.3 Computing Transport of Dye

In each simulation step, we calculate the evolution of the �uid's velocity �eld u~ (x~ ; t+�t) from u~ (x~ ; t) and
then we calculate the evolution of the dye's density �eld �(x~ ; t+�t) from �(x~ ; t) and u~ (x~ ; t+�t).

Evolution of the density �eld � of dye follows a very similar structure as with the velocity �eld of the �uid.
We compute �(x~ ; t+�t) from �(x~ ; t) as follows:

�(0)(x~ ; t+�t) �(x~ ; t)

�(1)(x~ ; t+�t) Add Density To�(0)(x~ ; t+�t)
�(2)(x~ ; t+�t) Advect �(1)(x~ ; t+�t)along u~ (x~ ; t+�t)

�(3)(x~ ; t+�t) Di�use�(2)(x~ ; t+�t)

�(x~ ; t+�t) �(3)(x~ ; t+�t)

2.1.4 Discretizing the System on a Grid

We represent �, S, and the individual components of u~ and f~ as values on a rectangular grid G of cells,
where �eld values are de�ned at the center of each cell. The grid has Nd cells and a length of Ld along axis
d 2 fx; y; zg. Then each cell has a length of ld=

Ld
Nd

along axis d. If the grid has origin 0~ corresponding to

grid cell G0;0;0, then the center of grid cell Gi;j;k has location x~ =(X~ +0.5)� l=
0@ (i+ 0.5) lx

(j + 0.5) ly
(k+ 0.5) lz

1Awhere X~ =
0@ i

j
k

1A
and i, j, and k are nonnegative integers. Additionally, for a given integer xd, the indices Xd of the nearest

cells along axis d are given by xd
ld
¡ 0.5; and for a given non-integer xd, they are given by

j
xd
ld
¡ 0.5

k
andj

xd
ld
¡ 0.5

k
+1.

The Add Forces and Add Density steps are merely cell-wise addition of �t f~ to u~ and of S to �.

AdvectV alongU (where V is the scalar or vector �eld to advect along vector �eld U) computes x~ (i; j ; k) for
each (i; j ; k) and trilinearly interpolates the value of V at Tracex~ (i; j ; k)Alongw~ (1)(x; t+�t)and¡�t. We
can implement Tracex~ AlongU and¡�t as a �rst-order approximation (as discussed above and presented
in [5]), or as a second-order Runge-Kutta approximation (as claimed in [4]).

The same sparse linear solver can be used for di�usion and projection. It can be implemented as an iterative
(relaxation) method such as Gauss-Seidel (as used in [5]), Jacobi, or Conjugate Gradient iteration, or as a
multi-grid algorithm (the best theoretical choice but slow in practice, according to [4]).

4

To prepare the di�usion equation 5 for such a solver, we discretize it on a grid. For a vector or scalar �eld
V , the di�usion step V (x~ ; t+�t) Di�useV (x~ ; t) obeys the equation

V (x~ ; t+�t)¡ ��tr2V (x~ ; t+�t)=V (x~ ; t)

Let Vi;j;k V (x~ ; t) and Vi;j;k0 V (x~ ; t+�t). Then the equation is discretized as

Vi;j;k
0 ¡� �t

Vi+1;j;k
0 +Vi¡1;j;k

0

lx
2 +

Vi;j+1;k
0 +Vi;j¡1;k

0

ly
2 +

Vi;j;k+1
0 +Vi;j;k¡1

0

lz
2 ¡

2

lx
2 +

2

ly
2 +

2

lz
2

!
Vi;j;k
0

!
=Vi;j;k

Assuming lx= ly= lz=1, this simpli�es to

Vi;j;k
0 =Vi;j;k+ ��t (Vi+1;j;k

0 +Vi¡1;j;k
0 +Vi;j+1;k

0 +Vi;j¡1;k
0 +Vi;j;k+1

0 +Vi;j;k¡1
0 ¡ 6Vi;j;k0)

We also discretize the projection Poisson equation r2q(x~ ; t)=r�V (x~ ; t) for vector �eld V as

qi+1;j;k+ qi¡1;j;k
lx
2 +

qi;j+1;k+ qi;j¡1;k
ly
2 +

qi;j;k+1+ qi;j;k¡1
lz
2 ¡

2

lx
2 +

2

ly
2 +

2

lz
2

!
qi;j;k =

Vi+1;j;k
0 ¡Vi¡1;j;k0

2 lx
+

Vi;j+1;k
00 ¡Vi;j¡1;k00

2 ly
+
Vi;j;k+1
000 ¡Vi;j;k¡1000

2 lz

where qi;j;k q(x~ ; t), Vi;j;k0 Vx(x~ ; t), Vi;j;k00 Vy(x~ ; t), and Vi;j;k000 Vz(x~ ; t). Assuming l lx= ly= lz, this
simpli�es to

qi+1;j;k + qi¡1;j;k + qi;j+1;k + qi;j¡1;k + qi;j;k+1 + qi;j;k¡1 ¡ 6 qi;j;k =
1
2
(Vi+1;j;k
0 ¡ Vi¡1;j;k

0 + Vi;j+1;k
00 ¡

Vi;j¡1;k
00 +Vi;j;k+1

000 ¡Vi;j;k¡1000)

2.2 Implementation

[5] presents C code fragments of Stam's Stable Fluids algorithm as was just discussed. Accompanying this
paper was the C source code of an interactive demo program implementing his algorithm using OpenGL's
�xed shader pipeline. My goal for this component of the milestone was to reimplement the Stable Fluids
algorithm in such a way that I could extend upon my progress in future milestones. Thus, I set the following
speci�cations for my implementation work in this milestone:

1. The algorithm and its data should be encapsulated in class members for modularity.

2. Logical subroutines in the algorithm should be fully decomposed into computational primitives.

3. Grids should be abstracted as much as possible away from direct memory bu�ers, to allow for easy
replacement of the actual class implementing the grid. However, there should be a fast way to access
the memory bu�ers underlying grids so that they can be used as OpenGL textures.

4. The grids used by the algorithm should be represented as Arrays in Eigen. This may allow for the
easy use, if appropriate, of linear systems solvers provided by Eigen. Milestone 2 requires extension
of these data structures into three dimensions, which can be stored by Eigen's experimental (and
o�cially unsupported) Tensor class.

5

5. The algorithm's ongoing state will be displayed in an interactive OpenGL application using the
modern programmable shader pipeline, by rendering the �uid system as a texture. This will enable
future modi�cation of �uid rendering via fragment shaders, such as in the optional last milestone.

For my implementation, I made:

1. A VectorField class composed of multiple uniform two-dimensional grids (stored as Eigen Arrays) to
couple all components of a vector �eld in arithmetic operations and function applications. Dye density
is then a VectorField with one component (i.e. a scalar �eld), while �uid velocity is a VectorField
with two components.

2. A FluidSystem class to hold the state of the simulation system as a dye density VectorField and a
velocity VectorField, and to provide methods for simulating the evolution of the system.

I followed the LearnOpenGL's 2D Game Rendering tutorial series to implement classes for 2-D rendering in
OpenGL's programmable pipeline. To this end, I made:

1. A Shader class (with minor modi�cations from the tutorial) to manage shader loading and uniform
sharing.

2. A FluidTexture class (with heavy modi�cations from the tutorial's Texture class) to manage textur-
ization of FluidSystems.

3. A ResourceManager class (with moderate modi�cations from the tutorial) to manage Shaders and
FluidTextures.

4. A Canvas class (with moderate modi�cations from the tutorial) to manage how FluidTextures are
drawn, along with the top-down camera's pose.

5. An Interface class (built on the structure from the tutorial) to respond to user interactions and
integrate the Canvas, the ResourceManager, and the FluidSystem.

I then �nished implementing the simulation system. From an initial condition of a square of dye with a
small constant upwards velocity near the center of the grid, the system qualitatively appears to evolve very
similarly to how it does in Stam's demo:

Figure 1. Deterministic evolution of the system from initial conditions, with di�usive (dye dissipation) and viscosity
(velocity dissipation) constants set at 0. Screenshots taken of my OpenGL program. Note the turbulent �ow in the
center and the eventual laminar �ow at grid boundaries.

However, the numerical dissipation that Stam's method su�ers from is very evident, as can be seen in the
rapid spread, blending, and fading of thin strands of food coloring. This justi�es the work proposed for
Milestone 3, namely implementation of Kim et al.'s BFECC extension of Stam's method to mitigate this
numerical dissipation and produce more realistic results.

Additionally, the camera enables me to pan, zoom, and rotate on the canvas:

6

Figure 2. Canvas after panning, zooming, and rotating relative to the center of the viewport.

2.3 Preliminary Performance Pro�ling

On my low powered Chromebook (Intel Core i3 processor @ 1.70 GHz with integrated graphics) with full
compiler optimizations (level -O3), each 300-by-300 grid takes an average of 91 ms to compute, which is
approximately 10 fps. Each 200-by-200 grid takes an average of 40 ms to compute, each 400-by-400 grid takes
an average of 166 ms to compute, and each 500-by-500 grid takes an average of 250 ms to compute. At this
size scale, performance appears to scale linearly with the number of grid cells, as expected of a simulation
which performs arithmetic operations on each cell of a grid based on a constant number of neighbors:

Grid Size (# cells) Compute Time (ms/frame)
400 40
900 91
1600 166
2500 250
3600 500

Table 1. Size of grid versus time required to compute a frame of the grid. Each linear solve operation is run for exactly
20 steps, rather than to convergence. Linear least-squares �t gives (ComputeTime)=0.001004� (GridSize)+1.18 with
R2=0.999.

Pro�ling with Callgrind reveals that the computational cost of the simulation is dominated (by an order
of magnitude) by the linear solver, which currently runs 20 iterations of the Jacobi method. Interestingly,
replacing the Jacobi method with the Gauss-Seidel method, which is known to converge slightly more
quickly while also removing the need for a temporary additional data structure, resulted in much worse
performance (160 ms to compute each frame of a 300-by-300 grid). This may be due to some quirks of
compiler optimization or memory caching & access that make Jacobi iterations faster than Gauss-Seidel
iterations. Regardless, this pro�ling result shows that the primary target of performance optimization should
be the linear solver, and that the higher-level abstractions I used for grids (instead of manual indexing into
bu�ers in memory) do not signi�cantly hurt performance. Evaluating other methods of solving the linear
systems in the Stable Fluids algorithm may be a useful objective for Milestone 3.

3 Milestone 2
This milestone consists of:

1. Allowing for simulation with dyes of di�erent colors.

2. Extending the �uid system to 3 dimensions.

3.1 Colors

Milestone 1's results only simulated dye density as a scalar �eld, namely a VectorField with one component.
Adding additional color channels was then a matter of specifying dye density as a 3-component VectorField
for cyan, magenta, and yellow. I chose to use the CMY subtractive model of color blending rather than

7

the RGB additive model to more closely model how food coloring mixes. Then I modi�ed my FluidTexture
class to store and track all color channels in the dye density VectorField. For clarity and simplicity, I chose
to pass each color channel as a separate �red� texture to the fragment shader and blend the color channel
textures in the shader, rather than reshaping the separate arrays underlying the color channels into a single
RGB texture to pass into the fragment shader.

I had to reduce the system's grid size from 300-by-300 to 200-by-to-200 to maintain reasonable performance
(currently 60 ms/frame). From an initial condition of di�erently-colored squares of dye with a moderate
constant upwards velocity in the lower half of the grid, the system behaves as expected:

Figure 3. Note the subtractive color mixing, with the appearance of green and red. Note also the eventual evolution
of the Karman vortex street.

3.2 Extension to Three Dimensions

To extend my system into three dimensions, I used Eigen's experimental (and unsupported) Tensor class for
my grids and VectorFields rather than Eigen's Array class. Interestingly, doing this with a two-dimensional
Tensor (as a direct replacement for an Array) provided a small performance boost to the software. While
this was conceptually simple, I ended up spending a lot of time here debugging uninitialized Tensor elements.
However, overall adding a third dimension signi�cantly slowed down the simulation, making performance
optimization crucial to achieve interactive usage.

After extensive preliminary experimentation, I found that the depth of the system should be quite small
compared to the length and width of the system, and that velocity sources should be quite high compared
to the length scales of the system, in order to begin to approximate the e�ect of soap in milk with dye.

Figure 4. The constant velocity source is at the upper left corner of the central square in the initial conditions (leftmost
image). Initial conditions also had dye in layers below the uppermost layer, though only the uppermost layer is rendered.
This leads to evolution over time of the color of the �uid exiting the constant velocity source, as dye is transported
underneath the surface and eventually pulled up by the constant velocity source or by other convection cells. Note the
sharp edges visible in the rightmost image. These appear to be �uid separations from vertically-oriented convection
cells, and are extremely unrealistic; during the simulation, these separations persist for quite a while. If �uid is �owing
under the topmost layer, blending the top few layers of the �uid may solve this problem while also better approximating
the appearance of milk. Note also the excessive di�usion of dye, despite a null di�usion constant; this is a consequence
of numerical dissipation as discussed previously.

8

Figure 5. On left, screenshot of the simulation with adjusted camera pose. The specks of color in the upper left corner
were unexpected and result from the extremely high �uid velocity in the area. While not strictly physically accurate,
they resemble some of the pigment particles shed by solid dye sources placed in the milk-soap system, as seen in the
reference video in �gure 6. Additionally, the softer variation in color seen here resembles some scenes in that reference
video.

Figure 6. Screenshots from the visual reference video for this project [6], for comparison to my current progress.
Achieving the level of detail seen in the right screenshot would require extreme performance improvements that would
be beyond the scope of this project.

4 Summary

Having completed Milestones 1 and 2, I am ready to proceed with Milestone 3, namely improvement of sim-
ulation accuracy while maintaining reasonable performance. At a minimum, this will involve implementation
of the BFECC extension to the Stable Fluids method [3] and use of a faster sparse linear solver (preferably
a black-box solver) and/or a higher-order particle tracer.

Bibliography

[1] Dan Morris . Dan Morris's Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999).
Https://www.techhouse.org/~dmorris/projects/summaries/dmorris.stable_�uids.notes.pdf.

[2] Mark J Harris. GPU Gems, volume 1, chapter Fast Fluid Dynamics Simulation on the GPU. Addison-Wesley, 2004.
[3] ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. Advections with Signi�cantly Reduced Dissipation

and Di�usion. IEEE Transactions on Visualization and Computer Graphics, 13(1):135�144, January 2007.
[4] Jos Stam. Stable Fluids. In Proceedings of the 26th annual conference on computer graphics and interactive techniques,

SIGGRAPH '99, pages 121�128. New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.
[5] Jos Stam. Proceedings of the Game Developer Conference. March 2003.
[6] Michael Zoidis and Jodie Southgate. Olafur Arnalds & Nils Frahm - a2 (O�cial Video). YouTube Video, November 2012.

9

	1 Summary
	2 Milestone 1
	2.1 Mathematics
	2.1.1 Summary of the Navier-Stokes Equations
	2.1.2 Computing Transport of Fluid Velocity
	Adding Forces
	Advection
	Diffusion
	Projection

	2.1.3 Computing Transport of Dye
	2.1.4 Discretizing the System on a Grid

	2.2 Implementation
	2.3 Preliminary Performance Profiling

	3 Milestone 2
	3.1 Colors
	3.2 Extension to Three Dimensions

	4 Summary
	Bibliography

