
Analysis of Top-Tier Computer Science Conferences

and Research Communities using NLP

Ethan Li and James Hong

December 16, 2016

Abstract

Computer science is a broad field with many sub-topics and disciplines, each with their own top-
tier conference venues and distinct research communities. This project aims to study the structure
and characteristics of these research communities through paper titles and abstracts published in top
conferences using techniques from natural language processing and understanding, AI, and ML. By
attempting the task of predicting the conferences or research communities associated with published
papers, we identify interesting insights about research communities reflected in the semantic and
syntactical content of paper titles and abstracts.

1 Introduction

Computer science is a very broad subject with many smaller fields and disciplines. Most researchers are
very specialized in areas such as deep learning, databases, operating systems, and HCI. These sub-disciplines
encompass a range of topics in themselves. Many researchers and students never reach out beyond their
own specialized fields, and, in doing so, forgo interesting knowledge and possibilities for research that spans
several fields. Likewise, in pigeonholing oneself into a single field or even a larger area such as systems, AI,
or theory, one potentially hampers one’s own ability to appreciate and evaluate the work of others. This can
lead to very innovative papers being rejected (because reviewers lack expertise to review them) or mediocre
work being accepted at top-tier conferences where the main focus differs from the content of the paper.
Tackling the lack of pervasive and rigorous mixing between CS disciplines is a challenging problem.

We propose a simpler task to apply NLP tools and algorithms to understand the relationship between
varying disciplines in CS. In doing so, we hope to detect patterns in CS publications and examine whether
one can objectively capture the attributes that make a paper suitable for one CS conference and not another.

2 Background & Related Work

Prior investigations into the structure of research communities, including but not limited to the publication
venue prediction task, have proposed and applied methods for mining citation or authorship network
connectivities and for modeling topics from document texts. Our review of related work focuses on the
latter approach, as the analysis of document texts which this approach accomplishes complements the former
approach.

Early approaches for topic modeling in our problem domain identified latent topics between words, authors
and documents [11]. One line of investigation applied Latent Dirichlet Allocation (LDA) to associate latent
topics between article titles and conferences in order to characterize topics of different conferences and to
identify relationships between conferences [2, 3]. This approach was extended to associate authors with
topics in order to detect semantically-related research communities [1, 7]. Similar approaches added a latent
subject layer for conferences and associated subjects with authors and topics [12], incorporated cited authors
into models of topics and conferences [14], or used part-of-speech patterns to identify n-gram multiwords for
topic extraction [5]. Unlike these previous investigations, we do not apply topic modeling of titles for the
venue prediction task, but rather we attempt to exploit latent semantic and syntactical structure in titles
and abstracts.

1

The most similar prior investigation to our project focuses on engineering lexical and syntactical features
to capture writing style for venue prediction from abstracts [13]. However, rather than hand-crafting feature
sets to represent document-level lexical and syntactical properties, we use word embeddings to generate
feature vectors for downstream use. As these word embeddings capture semantic and syntactical relationships
between different words, our approach aims to combine the advantages of the previously discussed work in
topic modeling and writing style modeling for venue prediction.

Unsupervised word vector embedding techniques such as word2vec [8] and GloVe [9] map words in a
corpus onto a vector space such that words with common contexts in the corpus have similar vectors. This
property makes such embeddings useful for capturing semantic and syntactical relationships between words.

3 Dataset

For our tasks, we are using the ACM-Citation-Network v8 dataset (henceforth referred to as ACM-Full),
which consists of CS paper citations compiled by Tang, et al. [11]. In total, the dataset contains citations for
publications in 273,275 venues, many of which are actually book titles or conferences from different years. To
make the problem human-understandable, we only included citations with both a title and an abstract, and
we filtered the publication venues to 31 top-ranked conferences, with each conference aggregated by year. We
refer to the resulting dataset as ACM-Conf. To reduce training set imbalance, we limit each conference to
1000 examples, though many conferences still have far fewer training examples. This yields 35,168 training
examples and 1,483 each for validation and test. Refer to Appendix 11.1 for the labels and their train and
test set sizes.

Because many conferences are very similar (e.g., ACL and NAACL), we built another dataset, ACM-
Field, by aggregating conferences from ACM-Conf into disciplines for our labels; this produces more balanced
training labels and is more focused on the task of classifying topics in CS. There are 14 disciplines, including
AI, computer vision, NLP, HCI, OS, mobile, theory, etc. In total, we have 26,009 examples for training and
700 each for validation and testing. Refer to Appendix 11.1 for the full set of labels and their train and
test set sizes. Examples of article titles in this dataset include Efficient online structured output learning
for keypoint-based object tracking in computer vision, Using model checking to debug device firmware in
operating systems, and New hardness results for congestion minimization and machine scheduling in theory.

4 Methodology

Our main project focuses on classification of paper titles and abstracts into either conferences or CS subfields.

4.1 Oracle: Human Baseline

Our oracle consists of manual prediction by team members of unprocessed documents. For Task 1, we
attained 61% accuracy on 100 randomly-sampled articles. For Task 2 with ACM-Field, we attained 69%
accuracy on 650 randomly-sampled articles; we noticed that confusion between the AI, ML, CV, and data
mining labels was a major source of human classification error.

4.2 Models

We experimented with several classifiers including softmax, kernelized SVM, k-NN, and multi-layer
perception (MLP). These models take an input vector consisting of features and generally lose sequence
information. To remedy this, we tested a recurrent model with gated recurrent units (GRU).

Of these models, the softmax classifier is simplest to tune and performs very well. We attribute its high
accuracy to the expressiveness of the features. Moreover, the softmax classifier is quick to train using SGD.
By contrast, the kernelized SVM with a Gaussian (RBF) kernel trained very slowly and returned similar, but
slightly, worse accuracies. Likewise, the MLP classifier took much longer to train and did not outperform
softmax. While, it is likely that investing significant effort in tuning the hyperparameters of these non-linear
models would yield better performance, the softmax baseline is very strong by itself. We report the full
accuracies in the following sections.

2

Whereas a feed forward neural network such as the MLP is deep with a fixed depth, a recurrent neural
network (RNN) is deep with respect to timesteps, namely tokens in the sequence. This allows RNN
architectures to take variable length inputs and retain sequence information. We experimented with the
GRU variant of RNNs, and our experiments motivate similar findings as the above with softmax: the
expressiveness of the word embeddings plays a larger role in the classification results than the choice of
model.

4.3 Features

Baselines: Unigrams & Bigrams

For our baseline, we used unigram and bigram features. To avoid exploding the feature space, we threshold
the set of features to include only those with support of at least 50. This yields 8000 unigrams and 25,000
bigrams. While even a simple model performs well with unigram features, we show that the large number
of features easily results in overfitting to the training data.

Word Vectors

A second approach that we tried was word vectors, trained from scratch using the word2vec algorithm on the
full ACM citations dataset as well as pre-trained vectors using GloVe. The reason we used word2vec rather
than GloVe for training custom vectors is that the former can be extended to obtain paragraph vectors,
which represent variable length text in a single vector. These are described below in the next section.

There are many ways to aggregate word vectors to obtain an embedding for a text. We experimented
with both maximizing and averaging over word vectors of the tokens in a text. These yielded nearly identical
results. We also evaluated a variety of model parameters to train the word embeddings, but these also yielded
nearly identical results.

Paragraph Vectors

Paragraph vectors were introduced in 2014 by Quoc Le and Tomas Mikolov [6], when they demonstrated
state-of-the-art classification accuracy on two hotly contested sentiment analysis tasks. The algorithm works
by introducing a special token into each context of a text to represent the text as a whole. In doing so,
the model can capture information about all of the contexts and sequence information. Figure 1 shows an
example of how the distributed bag of words paragraph vector algorithm works. Like word2vec, paragraph
vectors can also be trained using the skipgram architecture. One challenge with paragraph vectors is the
difficulty of tuning them; it is difficult to replicate their performance and, as far as we know, no one has
successfully replicated the reported accuracies on the sentiment treebank dataset [10, 4].

¶ the group talent assembled

of
Concatenate / Average

¶

the group of talent assembled

Figure 1: The paragraph vector algorithm introduces a special token into each context, but is analogous to
CBoW and skip-gram otherwise. Image source [4].

Parts-of-Speech

One interesting question that we might ask about varying publication venues is whether there are differences
in writing style. One simple approximation of this is to use only part-of-speech information. To extract

3

these features, we used a basic perceptron POS tagger in NLTK to tag our input sequences. From this, we
extracted POS unigrams and bigrams. While accuracy using only POS features is mediocre compared to
that of word vectors or n-grams, we did find some interesting patterns.

Combined Features

It’s often the case that concatenating vectors of independent features boosts classification accuracy. We
tested this cautiously, as unigrams and bigrams are very high dimensional to begin with. Our model easily
overfits with either alone. A more interesting experiment is concatenating differently trained word vectors
(CBOW & skipgram) and features such as POS. Overall, we find that concatenating does not improve
performance noticeably. Word vectors already embed much of the information about the tokens in the text.

5 Task 1: Conference Classification

5.1 Definition

Given a query article’s title and abstract as unstructured text, our system will label it with a prediction of
which conference, out of the 31 conferences in ACM-Conf, the article is published in. For instance, Increasing
Datacenter Network Utilisation with GRIN would have label NSDI, while Optimistic Crash Consistency
would have label SOSP (note, we have omitted the abstracts here for brevity). One disadvantage of this
task is that incorrect predictions for similar conferences are penalized equally. For example Millions of Little
Minions: Using Packets for Low Latency Network Programming and Visibility was published at SIGCOMM,
but could be easily mispredicted as NSDI. This is especially problematic for conferences in OS (SOSP and
OSDI) which alternate between years, and conferences such as NAACL and ACL which differ primarily by
region, with the former being “North American”.

5.2 Results & Analysis

Features Train Dev Test

Human (Oracle) 61.0%
Random 3.2%
Unigram (Baseline) 91.6% 51.7% 52.7%
Bigram (Baseline) 99.9% 46.7% 46.8%
GloVe (Wiki+Gigaword) 56.5% 43.1% 44.2%
Word2Vec (ACM) 65.1% 51.9% 49.8%
Paragraph Vectors 38.0% 24.0% 25.2%

Table 1: Task 1 accuracy by feature type with a softmax classifier. Low-dimensional features, such as word
vectors, are less susceptible to overfitting.

On the conference prediction task, we obtain 52.7% accuracy using just unigram features. The model
very clearly overfits with 91.6% accuracy on training data. Moreover, this result is incorrigible even with
very aggressive regularization. Also, this result is shy of our human baseline. One possible reason for why
unigrams outperform the other evaluated features is that when predicting among conferences, many of which
are similar, the model will learn that certain conferences emphasize certain topics. For instance, whereas
NSDI and IMC (which is subsumed by the SIGCOMM label) are both networking conferences, the former
deals with networked systems implementation while the latter focuses on Internet measurement. This means
that terminology related to Internet governance such as “autonomous system (AS)” would appear in the
latter but not the former. Unigrams and bigrams can explicitly capture these features, whereas techniques
such as word2vec and GloVe are less direct. Our training accuracies with GloVe and word2vec suggest that
this indirection has a regularizing effect in addition to having an negative impact on overall accuracy.

Figure 2 shows the confusion matrices for test for the softmax classifier trained with word2vec
embeddings. First, many of the conferences in the data set are dataset are too small and only rarely

4

predicted. For instance, ICFP, International Conference on Functional Programming, has very few training
examples. Oversampling might help here but it is also possible that works published in ICFP can also be
published in larger programming language conferences such as POPL and PLDI. Second, the results indicate
that the model does in fact confuse conferences that are similar (see ICCV and CVPR; ACL, NAACL, and
EMNLP; SIGCOMM and NSDI). Indeed, may researchers who submit to these conference groups choose to
do so based on whichever deadline is nearest and annually attend each one.

When we modify the scoring mechanism so that if the true label is captured in the top 2 and 3 classes
predicted, the test accuracy with word2vec embeddings rises to 72.7% and 83.0%, respectively. This result
corroborates our observation that confusion between related conferences in the same CS subfield is a major
source of classification error and motivates our second task, prediction of CS research subfield rather than
conference venue.

NSD
I

SO
SP CCS

ACL
AAAI

PL
DI

ST
OC

EM
NLP

FO
CS

IC
DM

IC
M
L

CVPR
SI

GIR

M
ob

iS
ys

SO
DA

PO
DS

IC
FP

SI
GGRAPH

NAACL

SI
GCOM

M

IE
EE

SP

SI
GKD

D
CHI

VLD
B

Ubi
Com

p
PO

PL

M
ob

iC
omIC

CV

ASP
LO

S
OSD

I

CRYP
TO

Predicted label

NSDI

SOSP

CCS

ACL

AAAI

PLDI

STOC

EMNLP

FOCS

ICDM

ICML

CVPR

SIGIR

MobiSys

SODA

PODS

ICFP

SIGGRAPH

NAACL

SIGCOMM

IEEESP

SIGKDD

CHI

VLDB

UbiComp

POPL

MobiCom

ICCV

ASPLOS

OSDI

CRYPTO

T
ru

e
 l
a
b
e
l

0.160.060.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.020.000.480.080.020.000.040.020.000.060.000.020.020.00

0.060.440.000.000.040.000.000.000.020.000.000.000.020.020.000.000.000.000.000.060.020.020.040.100.000.020.000.000.100.040.00

0.000.060.060.000.060.000.060.000.000.000.000.000.000.000.000.060.000.000.000.060.410.000.000.000.000.000.060.000.000.000.18

0.000.000.000.700.000.000.000.100.000.000.060.000.060.000.000.000.000.000.040.000.000.020.000.000.000.020.000.000.000.000.00

0.000.000.000.060.640.000.000.000.000.020.140.000.040.000.000.000.000.020.000.000.000.020.040.000.000.000.000.020.000.000.00

0.000.020.000.020.040.580.000.000.000.000.020.000.000.000.000.000.020.000.000.000.020.000.000.020.000.160.000.000.100.000.00

0.000.000.000.020.020.000.540.000.100.020.000.000.000.020.200.020.000.000.000.040.000.000.000.000.000.020.000.000.000.000.00

0.000.000.000.500.020.000.000.300.000.020.020.000.060.000.000.000.000.000.040.000.000.020.020.000.000.000.000.000.000.000.00

0.000.000.000.000.020.000.100.000.620.000.000.000.000.000.200.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.04

0.000.000.000.000.020.000.000.000.020.320.260.000.080.000.020.000.000.000.000.000.000.260.020.000.000.000.000.000.000.000.00

0.000.000.000.000.100.000.020.000.000.160.540.020.040.000.000.000.000.000.000.020.020.040.000.000.020.000.000.020.000.000.00

0.000.000.000.000.000.000.000.000.000.000.020.600.020.040.000.000.000.000.000.000.000.040.000.000.000.000.000.280.000.000.00

0.000.000.000.080.000.000.000.000.020.000.040.020.640.020.020.000.000.000.000.000.000.020.060.020.000.000.000.040.020.000.00

0.000.000.000.000.000.000.000.000.000.000.000.080.020.760.000.000.000.020.000.000.000.000.100.000.000.000.000.020.000.000.00

0.000.000.000.000.020.000.140.000.220.000.000.000.020.020.540.000.000.000.000.000.000.020.000.020.000.000.000.000.000.000.00

0.000.000.000.000.020.000.040.000.080.000.000.000.020.000.140.280.000.000.000.000.000.020.000.340.000.060.000.000.000.000.00

0.000.000.000.000.000.120.000.000.000.000.000.000.000.080.000.000.170.000.000.000.000.000.000.000.000.580.000.000.040.000.00

0.000.040.000.000.000.000.000.000.000.000.000.000.000.040.000.000.000.320.000.140.080.000.080.020.120.000.160.000.000.000.00

0.000.000.000.460.080.000.000.160.000.020.000.000.080.000.000.000.000.000.060.000.020.060.060.000.000.000.000.000.000.000.00

0.020.020.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.020.000.800.000.000.000.040.020.020.020.000.020.000.00

0.000.000.000.020.000.000.000.000.000.000.020.000.040.000.000.000.000.000.000.120.640.020.020.020.000.020.020.000.020.000.04

0.000.000.000.020.000.000.000.000.000.160.020.000.100.000.000.000.000.000.000.040.020.540.040.020.020.000.000.000.000.000.02

0.000.000.000.000.000.000.000.000.000.000.000.000.040.040.000.000.000.020.000.000.000.020.860.000.020.000.000.000.000.000.00

0.000.000.000.020.000.000.000.000.000.060.000.000.040.000.000.000.000.000.000.020.040.080.000.700.000.020.000.000.000.020.00

0.000.000.000.000.040.000.000.000.000.020.000.000.000.000.000.000.000.040.000.060.020.040.200.020.560.000.000.000.000.000.00

0.000.020.000.000.000.040.200.000.020.000.000.000.000.000.000.000.040.000.000.000.040.000.000.000.000.600.000.000.040.000.00

0.000.020.000.000.000.000.020.000.000.000.000.000.000.000.020.000.000.080.000.200.080.000.060.000.100.000.420.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.600.000.060.000.000.000.000.000.000.000.020.000.000.000.000.000.320.000.000.00

0.000.080.000.000.020.080.000.000.000.000.000.000.000.020.000.000.000.000.000.020.060.000.000.040.000.000.000.000.680.000.00

0.100.210.000.000.000.020.000.000.000.000.000.000.000.000.000.000.000.050.000.070.050.020.000.170.000.000.000.000.170.140.00

0.000.000.020.000.020.020.000.000.040.000.000.000.000.020.040.000.000.000.000.000.140.020.000.000.000.000.000.000.000.000.68

Normalized confusion matrix

0

5

10

15

20

25

30

35

40

Figure 2: Test confusion matrix with Word2Vec features on ACM-Conf. Only test is shown for space reasons.

5

6 Task 2: Field Classification

6.1 Definition

Given a query article’s title and abstract as unstructured text, our system will label it with a prediction of
which CS research subfield (e.g. graphics, systems, HCI), out of the 14 subfields in ACM-Field, the article
is published in. This addresses the similar conference problem from task 1 described in section 5. For
example, similar conferences such as SIGCOMM and NSDI fall under the networking category. Likewise,
ACL, NAACL, and EMNLP are grouped under NLP.

6.2 Results & Analysis

From our results for predicting CS subfield, we find that unigrams are a very strong baseline, with a test
accuracy of 73.3% (Table 2), with overfitting a less severe issue than in Task 1. The strong performance
by unigram features may be explained by the same reasons as we proposed in Task 1. While they capture
many features and overfit to training data, they perform decently on dev and test and outperform the oracle,
which had a test accuracy of 69%.

Using word vectors appears to have a regularizing effect as in Task 1, though the loss in test accuracy with
pretrained GloVe vectors, which achieve 65% test accuracy, is more than made up for with word2vec vectors
trained on our dataset, which achieve 77.6% test accuracy and outperform the other features evaluated on
this task. Thus, the pretrained vectors do not appear to generalize well, perhaps due to the importance
of specialized CS research terminology in our texts, while word vectors trained on CS research texts do
outperform the baseline.

Features capturing word sequences do not appear to outperform the mean word vector feature with
word2vec vectors trained on our corpus. Paragraph vectors significantly underperform in comparison to
other methods. Given past difficulty in replicating the high performance previously reported for paragraph
vectors on other tasks, this result may indicate that our paragraph vector embeddings are not fully tuned. The
GRU model, which uses the full word vector sequence for each document rather than the mean word vector
of a document, approaches but does not surpass the test accuracy of the mean word vectors with a softmax
classifier; GRU models of varying internal projection dimensions from 16 to 128 all appeared to converge
to the same test accuracy. While further tuning of the GRU architecture may produce improvements in
test accuracy, it appears that capturing sequential structure of words does not provide immediate significant
improvements over the mean word vector representation.

As shown in Table 3, the softmax model with word2vec embeddings performs at least as well as more
complex models with word2vec embeddings while also maintaining less overfitting. Thus, it appears that use
of word vector embeddings to represent words in a document, rather than the choice of model for combining
word vectors into a vector to represent the document, is the most powerful contributor to test accuracy
identified in this project.

The confusion matrices for the mean word2vec features with the softmax model (Fig. 3) show
misclassification errors between AI, ML, and information retrieval, and between mobile and OS. These
errors are similar to the errors made by our oracle, suggesting that the these subfields overlap significantly
in the types of articles that are published to them. Consistent with this conclusion, modifying the scoring
mechanism so that the true label is captured in the top 2 and 3 classes predicted increases test accuracy to
89.4% and 94.4%, respectively (Table 4).

6

Features Train Dev Test

Human (Oracle) 69.0%
Random 7.1%
Unigram (Baseline) 83.1% 73.7% 73.3%
Bigram (Baseline) 97.7% 69.0% 68.2%
GloVe (Wiki+Gigaword) 71.0% 65.0% 65.0%
Word2Vec (ACM) 78.3% 75.4% 77.6%
Paragraph Vectors 42.9% 39.1% 41.4%
Word2Vec-Seq (GRU) 82.1% 70.1% 75.1%

Table 2: Task 2 accuracy by feature type. Except for the oracle and Word2Vec-Seq (GRU), all feature types
use linear softmax classifier; Word2Vec-Seq (GRU) uses a GRU classifier.

Model Train Dev Test

Softmax 78.3% 75.4% 77.6%
SVM (RBF kernel) 81.5% 78.1% 76.1%
MLP 100% 78.5% 76.9%
GRU 82.1% 70.1% 75.1%

Table 3: Task 2 accuracy by model type using word vectors trained on our corpus. Except for the GRUs, all
model types use the mean of word vectors for all words in a document; GRU uses the full sequence of word
vectors in the document.

NLP
GPH AI

M
L IR DB

SE
C TH

M
OB

NET HCI
OS CV PL

Predicted label

NLP

GPH

AI

ML

IR

DB

SEC

TH

MOB

NET

HCI

OS

CV

PL

T
ru

e
 l
a
b
e
l

0.89 0.00 0.03 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.86 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.06 0.00 0.04 0.00

0.06 0.01 0.73 0.06 0.04 0.02 0.00 0.01 0.01 0.00 0.02 0.00 0.03 0.01

0.03 0.00 0.06 0.71 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.06 0.00

0.04 0.00 0.02 0.12 0.67 0.07 0.01 0.01 0.01 0.01 0.02 0.00 0.02 0.00

0.00 0.00 0.01 0.01 0.07 0.81 0.02 0.01 0.01 0.01 0.00 0.02 0.00 0.01

0.00 0.01 0.00 0.02 0.01 0.02 0.80 0.03 0.03 0.04 0.01 0.02 0.00 0.01

0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.94 0.00 0.01 0.00 0.00 0.00 0.01

0.00 0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.72 0.07 0.09 0.01 0.01 0.00

0.00 0.01 0.00 0.00 0.01 0.02 0.05 0.00 0.08 0.79 0.01 0.04 0.00 0.00

0.01 0.05 0.01 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.86 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.03 0.04 0.00 0.02 0.07 0.01 0.79 0.00 0.03

0.00 0.03 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00

0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.04 0.00 0.90

Normalized confusion matrix

0

200

400

600

800

1000

1200

1400

1600

1800

NLP
GPH AI

M
L IR DB

SE
C TH

M
OB

NET HCI
OS CV PL

Predicted label

NLP

GPH

AI

ML

IR

DB

SEC

TH

MOB

NET

HCI

OS

CV

PL

T
ru

e
 l
a
b
e
l

0.86 0.00 0.08 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.68 0.02 0.00 0.02 0.00 0.00 0.02 0.02 0.02 0.08 0.00 0.14 0.00

0.10 0.00 0.64 0.06 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.04

0.06 0.00 0.02 0.62 0.12 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.16 0.00

0.04 0.00 0.02 0.06 0.68 0.08 0.00 0.04 0.02 0.00 0.06 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.12 0.74 0.04 0.00 0.02 0.02 0.00 0.04 0.00 0.00

0.00 0.00 0.00 0.04 0.02 0.00 0.74 0.02 0.14 0.04 0.00 0.00 0.00 0.00

0.00 0.00 0.04 0.00 0.00 0.00 0.02 0.94 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.06 0.02 0.00 0.70 0.08 0.12 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.02 0.10 0.76 0.00 0.04 0.00 0.04

0.00 0.14 0.02 0.00 0.02 0.00 0.00 0.00 0.02 0.02 0.76 0.00 0.02 0.00

0.02 0.00 0.00 0.00 0.00 0.04 0.06 0.02 0.00 0.14 0.00 0.64 0.00 0.08

0.02 0.04 0.00 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.84 0.00

0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.08 0.00 0.88

Normalized confusion matrix

0

5

10

15

20

25

30

35

40

45

NLP
GPH AI

M
L IR DB

SE
C TH

M
OB

NET HCI
OS CV PL

Predicted label

NLP

GPH

AI

ML

IR

DB

SEC

TH

MOB

NET

HCI

OS

CV

PL

T
ru

e
 l
a
b
e
l

0.84 0.00 0.08 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.00 0.76 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.02 0.14 0.00

0.10 0.02 0.70 0.02 0.04 0.02 0.02 0.00 0.02 0.02 0.04 0.00 0.00 0.00

0.02 0.00 0.06 0.60 0.14 0.00 0.04 0.00 0.02 0.00 0.04 0.00 0.06 0.02

0.12 0.00 0.02 0.10 0.62 0.06 0.02 0.00 0.02 0.00 0.04 0.00 0.00 0.00

0.00 0.00 0.04 0.00 0.08 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.02 0.00 0.04 0.04 0.78 0.04 0.02 0.02 0.00 0.02 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.02

0.00 0.02 0.00 0.02 0.02 0.04 0.06 0.04 0.60 0.08 0.06 0.06 0.00 0.00

0.00 0.00 0.00 0.02 0.02 0.00 0.02 0.02 0.16 0.76 0.00 0.00 0.00 0.00

0.00 0.08 0.02 0.02 0.06 0.00 0.02 0.00 0.08 0.00 0.70 0.00 0.02 0.00

0.00 0.00 0.02 0.02 0.02 0.06 0.02 0.00 0.06 0.12 0.00 0.62 0.00 0.06

0.02 0.00 0.04 0.02 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.88 0.00

0.04 0.02 0.06 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.06 0.00 0.78

Normalized confusion matrix

0

5

10

15

20

25

30

35

40

45

Figure 3: Train, dev, test confusion matrix with mean word2vec features and the softmax model on ACM-
Field.

Top k Train Dev Test

1 78.3% 75.4% 77.6%
2 93.7% 90.9% 89.4%
3 97.2% 95.6% 94.4%
4 98.6% 96.6% 97.3%
5 99.2% 97.6% 98.1%

Table 4: Train, dev, and test accuracies for the mean word vector embedding with the softmax model, when
a correct prediction appears in the top k predictions for each document.

7

7 Task 3: Exploration

7.1 Part-of-Speech Features

As expected, POS features performed worse than word features (Table 5). However, the results are still
interesting: we found that POS features were able to identify theory and HCI papers with greater-than-
expected precision and recall (Fig. 4). We believe that this is because the writing style in those fields is
sufficiently different from the rest. Note that POS unigrams perform poorly compared to POS bigrams, so
we only report results for the latter.

Features Train Dev Test

POS Unigram 25.8% 24.7% 24.8%
POS Bigram 39.7% 32.1% 30.8%

Table 5: Accuracy with only POS information and a softmax classifier on Task 1.

NLP
GPH AI

M
L IR DB

SE
C TH

M
OB

NET HCI
OS CV PL

Predicted label

NLP

GPH

AI

ML

IR

DB

SEC

TH

MOB

NET

HCI

OS

CV

PL

T
ru

e
 l
a
b
e
l

0.43 0.05 0.07 0.07 0.04 0.03 0.04 0.03 0.02 0.03 0.09 0.01 0.08 0.01

0.07 0.39 0.04 0.05 0.02 0.05 0.07 0.01 0.02 0.03 0.11 0.01 0.11 0.02

0.10 0.05 0.33 0.07 0.04 0.06 0.05 0.04 0.03 0.04 0.08 0.02 0.07 0.02

0.09 0.04 0.06 0.39 0.07 0.05 0.04 0.03 0.02 0.03 0.03 0.01 0.12 0.01

0.09 0.06 0.06 0.11 0.22 0.10 0.06 0.02 0.04 0.05 0.07 0.01 0.09 0.01

0.04 0.05 0.05 0.06 0.06 0.40 0.04 0.04 0.04 0.06 0.04 0.03 0.07 0.03

0.06 0.07 0.05 0.07 0.04 0.05 0.30 0.08 0.04 0.04 0.10 0.02 0.05 0.02

0.04 0.02 0.02 0.02 0.01 0.02 0.03 0.77 0.01 0.01 0.01 0.00 0.02 0.01

0.05 0.04 0.04 0.05 0.04 0.07 0.04 0.02 0.31 0.08 0.13 0.05 0.07 0.01

0.05 0.06 0.06 0.06 0.04 0.09 0.06 0.03 0.08 0.27 0.07 0.06 0.05 0.02

0.08 0.07 0.05 0.03 0.02 0.02 0.06 0.01 0.03 0.03 0.57 0.01 0.02 0.01

0.04 0.06 0.04 0.04 0.03 0.07 0.05 0.02 0.10 0.09 0.05 0.34 0.05 0.03

0.06 0.04 0.06 0.09 0.04 0.05 0.02 0.02 0.03 0.04 0.02 0.01 0.51 0.02

0.10 0.07 0.09 0.04 0.02 0.09 0.05 0.07 0.03 0.06 0.05 0.04 0.08 0.23

Normalized confusion matrix

200

400

600

800

1000

1200

1400

NLP
GPH AI

M
L IR DB

SE
C TH

M
OB

NET HCI
OS CV PL

Predicted label

NLP

GPH

AI

ML

IR

DB

SEC

TH

MOB

NET

HCI

OS

CV

PL

T
ru

e
 l
a
b
e
l

0.42 0.12 0.02 0.06 0.02 0.00 0.02 0.06 0.00 0.04 0.08 0.02 0.12 0.02

0.08 0.32 0.08 0.06 0.04 0.00 0.08 0.02 0.00 0.04 0.10 0.04 0.14 0.00

0.14 0.08 0.16 0.06 0.08 0.04 0.10 0.14 0.00 0.06 0.04 0.02 0.02 0.06

0.20 0.02 0.08 0.28 0.02 0.06 0.04 0.08 0.04 0.02 0.00 0.02 0.14 0.00

0.14 0.06 0.08 0.08 0.16 0.12 0.00 0.02 0.08 0.02 0.06 0.02 0.12 0.04

0.04 0.02 0.04 0.00 0.02 0.48 0.04 0.00 0.10 0.08 0.04 0.00 0.12 0.02

0.00 0.02 0.04 0.04 0.00 0.04 0.32 0.10 0.02 0.10 0.14 0.02 0.10 0.06

0.04 0.02 0.00 0.02 0.02 0.02 0.06 0.68 0.02 0.04 0.00 0.02 0.02 0.04

0.04 0.12 0.04 0.04 0.00 0.08 0.02 0.06 0.16 0.12 0.14 0.06 0.10 0.02

0.02 0.02 0.06 0.04 0.02 0.16 0.10 0.06 0.10 0.22 0.10 0.08 0.02 0.00

0.14 0.16 0.04 0.00 0.00 0.02 0.04 0.00 0.00 0.10 0.46 0.00 0.04 0.00

0.04 0.06 0.06 0.00 0.00 0.06 0.08 0.04 0.14 0.08 0.04 0.30 0.04 0.06

0.12 0.06 0.02 0.20 0.10 0.02 0.00 0.00 0.02 0.02 0.02 0.02 0.36 0.04

0.06 0.06 0.18 0.04 0.08 0.08 0.04 0.06 0.02 0.08 0.06 0.08 0.08 0.08

Normalized confusion matrix

0

4

8

12

16

20

24

28

32

NLP
GPH AI

M
L IR DB

SE
C TH

M
OB

NET HCI
OS CV PL

Predicted label

NLP

GPH

AI

ML

IR

DB

SEC

TH

MOB

NET

HCI

OS

CV

PL

T
ru

e
 l
a
b
e
l

0.28 0.06 0.06 0.08 0.06 0.04 0.10 0.06 0.04 0.02 0.06 0.04 0.08 0.02

0.04 0.46 0.02 0.04 0.02 0.04 0.12 0.00 0.02 0.08 0.04 0.00 0.12 0.00

0.10 0.04 0.28 0.04 0.06 0.02 0.12 0.10 0.04 0.02 0.08 0.02 0.06 0.02

0.10 0.02 0.10 0.32 0.02 0.06 0.10 0.02 0.04 0.08 0.08 0.00 0.06 0.00

0.14 0.04 0.04 0.12 0.10 0.18 0.00 0.04 0.02 0.02 0.14 0.04 0.10 0.02

0.06 0.02 0.04 0.06 0.10 0.32 0.08 0.12 0.02 0.02 0.06 0.02 0.08 0.00

0.02 0.04 0.08 0.08 0.06 0.08 0.20 0.10 0.00 0.06 0.12 0.02 0.10 0.04

0.06 0.02 0.08 0.02 0.00 0.04 0.02 0.74 0.00 0.00 0.00 0.00 0.02 0.00

0.06 0.02 0.08 0.10 0.06 0.10 0.04 0.02 0.24 0.10 0.04 0.08 0.06 0.00

0.06 0.06 0.06 0.10 0.04 0.04 0.06 0.02 0.12 0.14 0.06 0.04 0.10 0.10

0.14 0.04 0.06 0.02 0.02 0.06 0.04 0.00 0.08 0.10 0.42 0.00 0.00 0.02

0.06 0.16 0.04 0.06 0.04 0.02 0.08 0.02 0.20 0.04 0.00 0.14 0.08 0.06

0.12 0.04 0.00 0.14 0.10 0.06 0.02 0.04 0.04 0.00 0.06 0.02 0.36 0.00

0.14 0.06 0.06 0.02 0.06 0.12 0.06 0.12 0.02 0.06 0.00 0.02 0.08 0.18

Normalized confusion matrix

0

4

8

12

16

20

24

28

32

36

Figure 4: Train, dev, test confusion matrix on ACM-Field. POS bigram features strongly identify theory
papers.

7.2 Pairwise Classification

One of the original questions we set out to answer is whether different conferences can be classified based on
natural language features. This task should be trivial for conferences in two separate fields. For instance,
a logistic regression classifier easily obtains 98% accuracy separating computer vision and NLP. Likewise,
accuracy is still high when the comparison has slightly more overlap such as with HCI and graphics, where a
simple classifier obtains 91.0% accuracy. The slight loss of accuracy can be attributed to the fact that topics
such as visualization appear in both communities.

Some more interesting comparisons to draw are between very similar conferences. Table 6 shows the
accuracies from the aforementioned comparisons as well as ones between similar conferences. For example,
ACL and EMNLP are not well separated, though the classifier still exceeds random chance. The same is true
for SOSP and OSDI, the top two OS conferences, though it is possible that this result is confounded by the
lack of data in general as both SOSP and OSDI are much smaller and have far fewer papers than say CVPR.
However, AAAI and ICML are more different and therefore separated better, with 80% test accuracy. Finally,
the most surprising result we found was that the simple model performs well when classifying between FOCS
and SODA, Foundations of CS and Symposium on Discrete Algorithms, respectively. One implication of
this finding is that our labels for theory may be too coarse.

8

Classes Train Dev Test

CV vs. NLP 99.3% 98.0% 98.0%
CHI vs. SIGGRAPH 92.6% 88.0% 91.0%
ACL vs. EMNLP 71.8% 67.0% 65.0%
ICML vs. AAAI 90.0% 86.0% 80.0%
SOSP vs. OSDI 100% 67.4% 68.5%
FOCS vs. SODA 96.1% 82.0% 78.0%

Table 6: Accuracies of binary classification using logistic regression with unigram features

7.3 Unsupervised Clustering

We also experimented with unsupervised learning to investigate whether the conference and field labels are
natural clusters within the data, at least through the lens of natural language features. Specifically, we ran
k-means clustering with k = 8, purposely set to be less than the number of labels in order to force mixing of
classes. We used relatively low dimensional (50d) GloVe vectors on this task, as higher dimensionality has
an effect on the distance metric. Our results in this respect are interesting and we display three particular
clusters in Table 7. In order to provide more intuition as to the meaning of these clusters, we also show their
corresponding word clouds in Figure 5.

Cluster #1 #2 #3 #4 #5

1 HCI (27%) SEC (15%) MOB (11%) IR (10%) AI (12%)
3 TH (79%) SEC (5%) DB (3%) PL (2%) ML (1%)
5 NET (25%) MOB (19%) OS (18%) SEC (11%) DB (11%)

Table 7: Top 5 classes and proportions of 3 clusters from k-Means with k = 8.

With the exception of theory clusters, our results show that the natural clustering based on words in the
text is less pure than we might initially hope for. This is expected however as the feature extractor we used
simply averaged the word vectors without any regard to order or to identifying sequences. We might expect
a different result if we had trained an LSTM or GRU autoencoder, which ingests the full sequence and makes
predictions until the end of the sequence, and had used the last hidden state. However, it is interesting to
see clusters around systems and users and also systems and networks.

Again, theory was the exception (favoring very pure clusters) and we can perhaps see why; words such as
algorithm, time and log(arithm) feature prominently. Interestingly, the clusters also capture different uses
of log in security and database systems.

(a) Cluster 1. (b) Cluster 3. (c) Cluster 5.

Figure 5: Selected word clouds for the 8-clusters outputted by k-means.

8 Discussion

Our results are interesting for many reasons. First, we found that it is possible to obtain reasonably good
accuracy when predicting publication venues from a title and abstract. This can be useful when one would
like to decide which conference to submit their latest research to. Second, our results suggest that it is not

9

possible to do much better than 77% on the 14-way subfield prediction task because the subfields themselves
are overlapping; indeed, when we predict more than 1 field, the accuracy quickly jumps to the 90% range.

An orthogonal, but also fascinating, problem that our work does not solve is that of how to divide a
complex field such as computer science into distinct fields. Our clustering experiments and the model’s
confusion in tasks 1 & 2 between AI, ML, and information retrieval are a testament to this. Perhaps training
on full papers would solve this problem, but then the likely features will be section headers and overall length,
which are less interesting from a natural language understanding perspective. Another challenge is the size
of these communities. Whereas conferences such as EMNLP accept over 250 papers annually, SOSP accepts
fewer than 30 papers (and only every other year). These disparities make learning inherently challenging.
Finally, an unanswered question pertinent to our project is whether communities should be divided based
on human understanding of the topics (CV, NLP, HCI, etc.) or extraction of latent topics (as in prior work
with topic modeling), or when some research communities grow too large relative to others.

When experimenting, we also tested an alternative division of classes loosely based off Stanford’s CS
tracks; the 7 resulting classes are listed in appendix under ACM-Track. As expected, reducing the number
of classes increased accuracy. However, like our 14 class problem, these classes are in no way disjoint when
it comes publications, nor are they natural with respect to clustering using the word vector approach in
section 7.

9 Conclusions

Ultimately, our results demonstrate that there is sufficient structure and commonality between papers in a
field that allows natural language features to be used with reasonable results on classification tasks. These
results exceed our own ability (human oracle) to classify, suggesting that we too have much to learn with
respect to the varying topics in CS. This is a good thing.

10 Future Work

Our project can be extended in many ways. First, we can apply recursive neural-networks to the part
of speech features alone. We see that the performance is low for train, validation and test. This can be
attributed to the features not being expressive enough or due to the model. Another possible improvement is
to use a more powerful part of speech tagger than the perception one. Second, we can study the structure of
the larger communities which have far over 2,000 articles: for instance, the database, graphics, and combined
AI/ML/NLP/CV communities. Clustering within these might yield further interesting structures. Thirdly,
we have not used publication date as a feature in any of our experiments. It would be interesting to see for
the large groups, in particular, how cutting-edge research topics have shifted over time.

References

[1] A. Daud. A topic modeling approach for research community mining. In 5th International Conference
on Computer Sciences and Convergence Information Technology, pages 1078–1083, Nov 2010.

[2] Ali Daud, Juanzi Li, Lizhu Zhou, and Faqir Muhammad. Conference Mining via Generalized Topic
Modeling, pages 244–259. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[3] Ali Daud and Faqir Muhammad. Group topic modeling for academic knowledge discovery. Applied
Intelligence, 36(4):870–886, 2012.

[4] Michael Fang James Hong. Sentiment analysis with deeply learned distributed representations of variable
length texts, 2015.

[5] Nikhil Johri, Dan Roth, and Yuancheng Tu. Experts’ retrieval with multiword-enhanced author topic
model. In Proceedings of the NAACL HLT 2010 Workshop on Semantic Search, pages 10–18, Los
Angeles, California, June 2010. Association for Computational Linguistics.

10

[6] Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents.

[7] Daifeng Li, Ying Ding, Xin Shuai, Johan Bollen, Jie Tang, Shanshan Chen, Jiayi Zhu, and Guilherme
Rocha. Adding community and dynamic to topic models. Journal of Informetrics, 6(2):237 – 253, 2012.

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. CoRR, abs/1301.3781, 2013.

[9] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation.

[10] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
Citeseer.

[11] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: Extraction and
mining of academic social networks. In KDD’08, pages 990–998, 2008.

[12] Jianwen Wang, Xiaohua Hu, Xinhui Tu, and Tingting He. Author-conference topic-connection model
for academic network search. In Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, CIKM ’12, pages 2179–2183, New York, NY, USA, 2012. ACM.

[13] Z. Yang and B. D. Davison. Writing with style: Venue classification. In 2012 11th International
Conference on Machine Learning and Applications, volume 1, pages 250–255, Dec 2012.

[14] Zaihan Yang, Liangjie Hong, and Brian D. Davison. Academic network analysis: A joint topic modeling
approach. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ASONAM ’13, pages 324–333, New York, NY, USA, 2013. ACM.

11

11 Appendix

11.1 Dataset Labels

ACM-Conf

Label Num Training Examples Num Dev/Test Examples

AAAI 2000 50
ACL 2000 50
ASPLOS 479 50
CCS 72 17
CHI 2000 50
CRYPTO 536 50
CVPR 2000 50
EMNLP 885 50
FOCS 1461 50
ICCV 1584 50
ICDM 1700 50
ICFP 97 24
ICML 1960 50
IEEESP 2000 50
MobiCom 429 50
MobiSys 363 50
NAACL 456 50
NSDI 231 50
OSDI 168 42
PLDI 320 50
PODS 283 50
POPL 622 50
SIGCOMM 2000 50
SIGGRAPH 2000 50
SIGIR 2000 50
SIGKDD 2000 50
SODA 1111 50
SOSP 365 50
STOC 1372 50
UbiComp 675 50
VLDB 2000 50

12

ACM-Field

Label Abbreviation Num Train Examples Num Dev/Test
Examples

Artificial Intelligence AI 2000 50
Computer Vision CV 2000 50
Databases DB 2000 50
Graphics GPH 2000 50
Human-Computer
Interaction

HCI 2000 50

Information Retrieval IR 2000 50
Machine Learning ML 1960 50
Mobile Devices MOB 1667 50
Networking NET 2000 50
Natural-Language
Processing

NLP 2000 50

Operating Systems OS 1196 50
Programming
Languages

PL 1185 50

Security SEC 2000 50
Theory TH 2000 50

ACM-Track

Label Abbreviation Num Train Examples Num Test Examples

Artificial Intelligence AI 2000 50
Graphics GPH 2000 50
Human-Computer
Interaction

HCI 2000 50

Information INFO 2000 50
Networking NET 2000 50
Systems SYS 1659 50
Theory TH 2000 50

13

	Introduction
	Background & Related Work
	Dataset
	Methodology
	Oracle: Human Baseline
	Models
	Features

	Task 1: Conference Classification
	Definition
	Results & Analysis

	Task 2: Field Classification
	Definition
	Results & Analysis

	Task 3: Exploration
	Part-of-Speech Features
	Pairwise Classification
	Unsupervised Clustering

	Discussion
	Conclusions
	Future Work
	Appendix
	Dataset Labels

