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Abstract

Head pose estimation is a fundamental computer vision
problem that has many important applications, such as face
recognition, head gesture recognition, or real-time attention
assessment.

In this paper, we use a stereo webcam system to build
an intuitive real-time control system that moves a cursor to
the location a user’s head is pointing. Given input from two
webcams, we calibrate a rigid model of the head by trian-
gulating corresponding facial landmarks from both images.
From these 3D reconstructions of the head, we calculate
the head pose of the user, using RANSAC to find inliers and
optimizing with SVD-based partial Procrustes superimpo-
sition. We use this estimated head pose to project a cur-
sor onto the screen that follows the user’s head direction in
real-time. We employ mean filtering and Kalman filtering
to reduce noise in two parts of our pipeline—though such
filtering decreases the responsiveness of our system, it is
essential to attaining the level of precision desired in a cur-
sor control system. Our final system allows users to control
a cursor with a precision of around 10 pixels at most screen
locations while remaining physically intuitive to control.

1. Introduction

Head pose estimation is the task of calculating the ori-
entation and position of a head in the world, given a set of
2D and/or 3D images. Our specific problem is stated as fol-
lows: given real-time webcam footage of a user from two
webcams, move a cursor to the position that the user’s head
is pointing towards.

The algorithm that we are implementing is built upon
the gazr library created by Lemaignan et al. [10], which
implements 3D head pose estimation using the dlib face de-
tector library [7] and OpenCV’s solvePnP function [1]. We
compare the monocular webcam approach of gazr with our
implementation of a stereo webcam approach. We hypoth-
esized that the stereo webcam configuration better approxi-
mates the depth of the user’s head, which provides improved
accuracy when determining the desired position of the cur-
sor on the screen.

To create a rigid model of the head given a set of web-
cam images, we start by using the dlib [7] facial landmark
detector to extract facial landmarks from each image. Cor-
responding landmarks are then triangulated using a nonlin-
ear method to optimize reprojection error. From that point,
we observe real-time images from the webcams and use the
Kabsch algorithm to compute the transformation matrix be-
tween the observed head pose and initial calibrated head
pose. RANSAC is used with a 2 cm threshold in order to
eliminate outliers. In addition, we reduce input noise by
applying a sliding window mean filter on facial landmark
points and a Kalman filter on the position of the on-screen
cursor.

2. Related Work

There are a number of previous works that are rele-
vant or similar to the problem we are addressing. Murphy-
Chutorian et al. [13] perform a comprehensive review of a
variety of head pose estimation methods, including appear-
ance template methods, detector array methods, nonlinear
regression methods, manifold embedding methods, flexible
models, geometric methods, tracking methods, and hybrid
methods. They also propose methods to obtain a ground
truth estimate for evaluation, which ranges from subjective
methods (e.g. manually assigning head poses to images)
to more rigorous methods (e.g. magnetic sensors or optical
motion capture systems with near-infrared cameras).

Hannuksela [3] implements cursor control from head
pose estimating using a monocular camera system com-
posed of an initialization stage and a tracking stage as well,
but considers facial feature tracking and gaze detection in
addition to head pose estimation. Their pose estimation
system applies a Kalman filter, which is an optimal non-
linear estimation technique that can be used to generate a 3-
dimensional motion estimation of a rigid model of the head.

Other researchers use a stereo camera configuration ap-
proach, only a couple of which are included in this section.
Jiménez et al. [5] employ a method similar to the method
above. First, they construct a rigid model of the head us-
ing thirty feature points identified by the Harris algorithm.
The SMAT algorithm is used to track the two images inde-
pendently, after which incorrectly tracked points are elim-
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Figure 1. Our overall pipeline for webcam-based cursor control..

inated through RANSAC and the head pose is calculated
with POSIT. Gurbuz et al. [2] implement a stereovision
method that does not use a rigid model or initialization; they
use the eye positions to reconstruct the 3-dimensional face,
calculate a face plane estimation, and obtain the head pose.

Head pose estimation is a tool that has many applica-
tions in computer vision. It can be used to address the prob-
lem of eye gaze tracking, which has applications in human-
computer interaction, human behavior analysis, and assis-
tive driving systems. For example, head pose indicators can
be used as technological cues, such as to a Wii system [15].
In addition, due to occlusion or ambiguity when detecting
eyes in input images, head pose estimation can help define
a persons field of view [16]. There is a correlation between
attention and eye gaze or head pose direction [9]. This con-
nection can be used in assistive driving systems to track the
drivers attentional focus, which should be on the road [12].

In the taxonomy of approaches proposed by Murphy-
Chutorian et al. [13], we implement a model-based geo-
metric method using the estimated three-dimensional loca-
tions of detected facial landmark features. We also apply
Kalman filtering and eliminate facial landmark outliers with
RANSAC.

3. Methods
We compare two different methods for cursor control:

control using a Perspective-n-Point based monocular cam-
era baseline approach and control using a triangulation
based stereo camera setup. Our overall pipeline for cursor
control is shown in Figure 1.

3.1. Webcam Input

We use the video streams from one to two calibrated we-
bcams as the input into our pipeline, as seen in Figures 2 and
3. For both the monocular and stereo approaches, the cali-
bration of the cameras must be accurate for sensible results.
We use the StereoVision library [8] with a printed chess-
board to calibrate both cameras. For the stereo approach,
the rotation and translation between the two cameras must
also be known. In most stereo webcam configurations, the
cameras can be assumed to be parallel, so only the distance
between the webcams is required. In addition, the webcams

Figure 2. Stereovision configuration. Webcams are mounted on
top of the monitor which displays the cursor.

Figure 3. The two webcam views from the stereovision configura-
tion. The dlib facial features are outlined in red.

should be close enough to each other that all the facial land-
marks should be visible from both views when the user’s
head is at a distance at which their face is detected.

3.2. Facial Landmark Detector

Given one or two simultaneous frames from our webcam
input, we then apply a facial landmark detector to recover
the 2-dimensional locations of keypoints on the user’s head.
For our system, we use the facial landmark detector pro-
vided by the dlib library [7] to extract the 68 different facial
features pictured in Figure 4, which are outlined on the we-
bcam images as pictured in Figure 3.

An important consideration is that not all of the detected
facial landmarks are rigidly connected. The points corre-
sponding to the lower chin, mouth, and eyebrows can move
significantly relative to other points even when a user’s head
pose remains the same, particularly when a user is talking.



Figure 4. The 68 facial features returned by the dlib facial land-
mark detector.

3.3. Pose Estimation

We compare two different methods of estimating head
pose for cursor control: the monocular perspective-n-point
based approach and the stereo rotation matching approach.
Both approaches are alike in that they require a calibration
stage to establish an initial head pose relative to which all
later poses are computed.

The calibration stage corresponds an initial pose of the
user’s head to a position on the screen. During this stage,
the user holds their head still while looking at a specified
point on the screen. The user signals for the calibration
phase to end when a calibration visualization seems stable,
indicating that a good initial model has been established.
The webcam images at that moment are captured and used
to build the initial head model.

3.3.1 Monocular Approach

In the monocular approach, the facial keypoints correspond-
ing to eight relatively rigid points on the face are compared
against a fixed 3-D model of a generic user’s face, obtained
from [17]. Finding the rotation and translation that reproject
the fixed 3-D model onto the observed 2-D pixel locations
reduces to solving the perspective-n-point problem with two
cameras. We use the rotation and translation minimizing the
mean squared error between the reconstructed 3d points and
original model.

3.3.2 Stereo Approach

In the stereo approach, facial landmarks are first recovered
independently from each image. We then triangulate the
pairs of matching facial landmarks to recover their approx-
imate 3-D locations. This is accomplished by first setting
an estimate for the 3-D location that minimizes the least
squares distance from both triangulating lines. We further

Figure 5. 3d point cloud of facial landmarks after triangulation.

refine this estimate using a nonlinear iterative method that
minimizes the reprojection error from the computed 3-D
point to the two observed 2-D image points.

Triangulating all pairs of facial landmarks produces a 3-
D point cloud of facial landmarks, as shown in Figure 5.
For the stereo approach, we set the reference model of the
system to be the point cloud triangulated when the user is
looking at the center of the screen during head pose calibra-
tion. Once this reference model is set, we fit the optimal
rotation and translation that transform the reference model
into the currently observed 3-D model, minimizing the aver-
age squared distance between matching points. We find the
optimal R and T using the SVD-based partial Procrustes
superimposition algorithm [6].

3.3.3 RANSAC-Based Outlier Removal

Because some facial landmarks can be localized very poorly
by the landmark detector (leading to poor triangulation) we
enhanced the partial Procrustes superimposition algorithm
with a RANSAC based approach that filters out outliers at
every time step. In our algorithm, we first iteratively chose
random sets of 4 facial landmarks in the 3d point cloud,
each of which uniquely describes a transformation consist-
ing of rotation and translation. For each obtained rotation
and translation, we determine the inliers for the particular
transformation as the points that contain a low difference
between their reconstructed and observed locations. We
found that in practice a 2 centimeter threshold for deter-
mining inliers worked well at improving the stability of our
system.

Only the points in the largest inlier set obtained through
this iterative process, which we run for 50 iterations, are



then used to reconstruct R and T using the partial Pro-
crustes superimposition algorithm.

3.4. Cursor Localization

Localizing the cursor directly in front of the user’s head
given the rotation and translation from the reference posi-
tion simply the task of finding the intersection between the
ray emanating from the user’s head in their head pose di-
rection and the screen plane. In order to map this intersec-
tion (measured in the camera’s reference system) to a pixel
value, several additional pieces of information are needed:

1. We assume that the webcam(s) lies in the screen plane
and points normal to the screen plane. This is usually
the case for most webcam setups.

2. We need to know the resolution of the monitor to deter-
mine the conversion between pixels and centimeters.

3. We need to know the displacement from the webcam
to a known pixel location on the screen.

4. We need an initial correspondence mapping a head
pose to a particular pixel location (obtained during the
calibration phase).

With these pieces of information, the cursor location cor-
responding to a new head pose can be computed exactly.
Even if the computed cursor location is not perfectly in
front of the user, the feedback loop provided by the con-
stant movement of the cursor in response to head motion
provides an intuitive interface to accurately control cursor
movements.

3.5. Noise Filtering

As mentioned earlier, the dlib facial landmark detector
is rather prone to noise. Triangulation of the landmarks is
also very sensitive to input noise, so the final cursor loca-
tion is unstable. We want to make the cursor path smoother
and to minimize cursor instability when the user’s head is
held stationary. To accomplish this, we use noise reduction
methods. There are two instances in our approach where
we apply noise filtering algorithms: a sliding window mean
filter on the extracted facial landmark points and a Kalman
filter on the location of the cursor.

After obtaining the facial landmarks, we apply an inde-
pendent sliding window mean filter of size 20 to the position
of each landmark of each image. This attenuates Gaussian
noise in the location of 2-D facial landmark positions re-
turned by the dlib facial landmark detector when the user’s
head is still. While using such a linear filter has the po-
tential to deform the triangulated keypoints when the user
performs rapid rotation of the head, the additional stabil-
ity provided during finer movement is essential to allowing
everyday cursor operation.

We also apply a Kalman filter which estimates cursor
location, velocity, and acceleration from cursor positions
computed during the cursor localization step to smooth the
on-screen trajectory of the cursor. We find that this filter-
ing provides further stability in cursor control, albeit at the
cost of some responsiveness. This form of Kalman filtering,
based on the physical laws of motion, has the advantage of
being intuitive, allowing for fast user localization of the cur-
sor to a desired point. For improved cursor positioning sta-
bility, we used the velocity and acceleration estimates from
the Kalman filter to lock the cursor position whenever the
the cursor became stationary; hysteresis was added to the
transitions between the stationary and non-stationary state.

4. Evaluation

When we evaluated the baseline monocular system, we
were unable to achieve accurate estimates of the depth (z-
position) of the user’s head for our cursor control system.
As a result, we focus on evaluating the performance of our
stereovision-based system.

Because the task of cursor control is a user-centric one,
validation of the success of our stereovision-based system
must be evaluated through subjective tests. Quantitative
evaluation of the accuracy and stability of head pose esti-
mation can be done before user validation. Robust mea-
surement of accuracy, as described by [13], requires use
of precise head-mounted inertial sensors or optical motion
capture systems. We did not have access to such equipment,
and the cursor positioning task can tolerate minor inaccura-
cies because the user can make compensatory movements
to reach their desired cursor position. Thus, we chose to
evaluate accuracy qualitatively while evaluating robustness
to noise quantitatively.

4.1. Qualitative Results

During qualitative evaluation of our system (refer to sup-
plement for a demonstration video), we found that our sys-
tem generally accomplished the cursor control task, but with
accuracy and stability of the cursor position were limited.
The system responded well to coarse movements such as
scanning the cursor across the screen, but fine head move-
ments sometimes led to undesirable results such as over-
shooting or undershooting. When the user’s head was
pointed towards the edges of the screen, the cursor some-
times would converge on a very inaccurate position due to
incorrect estimation of facial landmark positions by dlib’s
detector. Additionally, the cursor’s position would still fluc-
tuate around its target position due to noise which passed
through our noise filters; this behavior was particularly no-
ticeable when the user’s head remained still. The instability
of the cursor position reduced the ease of precisely adjust-
ing the cursor’s position through small head movements.



Figure 6. Standard deviations of the triangulated facial landmark
position estimates over 10 seconds, without noise filtering.

Figure 7. Standard deviations of the triangulated facial landmark
position estimates over 10 seconds, with noise filtering.

When the user’s head moved quickly, on-screen cursor
position noticeably lagged behind as a result of the large
values needed in the Kalman filter’s measurement noise co-
variance matrix Rk required to stabilize cursor position; re-
ducing the covariance parameter made cursor position un-
acceptably noisy. This result suggests that the tradeoff be-
tween responsiveness to new head pose measurements and
robustness to noise in head pose measurements needs to
be addressed by using a less noisy head pose estimation
method or by collecting measurements at a higher sampling
rate (e.g. 60 Hz rather than 30 Hz).

4.2. Quantitative Results

To characterize the noise robustness of our system, we
measured the stability of various parts of our system while
the user’s head was held in a constant position which min-
imized the noisiness of dlib’s facial landmark detector,
pointed directly at the monitor for 10 seconds.

We found inherent limitations on the effectiveness of the
dlib facial landmark detector. The locations of detected
landmarks on images are often noisy. When a user holds

Figure 8. Standard deviations of the head position parameter
estimates over 10 seconds, with RANSAC (blue) and without
RANSAC (red).

Figure 9. Standard deviations of the head orientation parameter
estimates over 10 seconds, with RANSAC (blue) and without
RANSAC (red).

their head still in front of the webcam while looking di-
rectly at the computer screen, the location of most facial
landmarks on the user’s head returned by dlib varies with a
range of about 2 pixels, though some facial landmarks vary
with a range of 3 to 4 pixels. This noise becomes increas-
ingly severe for keypoints as the user’s head pose deviates
from this position. The landmark detector is particularly
unstable at localizing the points forming the outline of the
user’s head when the user’s head is significantly yawed. The
detector always attempts to locate all 68 points in the image,
even if some of the keypoints are occluded.

The errors from the dlib facial landmark detector were
severely magnified in the triangulation step, with standard
deviations of approximately 0.1 cm in the x and y directions
and 0.4 cm in the z direction (Figure 6). Adding noise fil-
tering to the estimated landmark positions significantly re-
duced the standard deviations in the z direction to be com-
parable to the standard deviations in the x and y directions,
though some facial landmarks still experienced unaccept-
ably high noise in the z direction (Figure 7).

Facial landmark position outliers in the z direction re-



Figure 10. Trajectory of the cursor for a stationary head, without
Kalman filtering (orange) and with Kalman filtering (blue).

mained in the triangulated point set even with noise filter-
ing (Figure 7), and these outliers degraded the quality of the
head pose estimation, with standard deviations of 0.12 cm
in the z estimate, 0.08 cm in the x estimate, and 1.2 de-
grees in the head pitch estimate (Figures 8 and 9). The ad-
dition of RANSAC effectively removed the effect of these
noisy outliers, reducing the respective standard deviations
to levels comparable with those of other parameters. Nev-
ertheless, the estimated head pose still suffered from noise
which degraded the stability of the subsequent cursor local-
ization step, and this noise was more severe when the user’s
head pose deviated from the optimal configuration used in
these tests.

The cursor localization step was very sensitive to noise
in R and T in the absence of Kalman filtering (Figure 10).
With heavy Kalman filtering on the cursor position, the cur-
sor position had standard deviations of 8 pixels in the x and
y directions while the user’s head was held still; this cor-
responded to a movement range of approximately 35 pixels
in each direction. Thus, our system could correctly local-
ize the cursor to the general region of the screen which the
user’s head was pointed at, but it did not exhibit the preci-
sion and stability for finer positioning (refer to the supple-
ment for a video example).

5. Conclusion

In this paper, we implemented a real-time head pose es-
timation procedure with a stereovision webcam configura-
tion. We used the estimated head pose to project a cursor
on the screen which moves according to the direction of the
user’s head. Our results show that the cursor control task
can be successfully completed, but there are still issues with
stability and time delay.

There are a number of limitations with our approach

which make it less than ideal for real world applications.
Firstly, a stereo camera configuration requires multiple we-
bcams and additional setup time. The webcams must be
placed parallel to each other and close together enough to
not occlude facial landmarks. Also, because all of the facial
landmarks must be seen from every camera view, the user
has a limited range of head direction. Another drawback is
that the user must manually initialize the construction of a
rigid head model prior to the pose estimation process. This
can possibly be automated with a face detector that cali-
brates when a valid face is detected, but it still requires the
user to hold their head stationary during calibration.

The primary area for future improvement is selection of
a monocular head pose estimation algorithm with more fa-
vorable noise characteristics. Such an algorithm could be
combined with our stereovision system for more accurate
depth estimation than is attainable with a purely monocular
algorithm and less noise than is exhibited with our stereovi-
sion system. Another direction for future work is to expand
the system to track the head pose of multiple people. We can
also optimize the current algorithm by testing under varied
lighting conditions and camera resolutions.

6. Code and Supplements
Our code can be found at: https://github.com/

ethanjli/CS231A-Screen-Stabilization
A video demonstration of our system responding to

movements from the user’s head can be seen at https:
//www.youtube.com/watch?v=ASCn2X2O9mI.

A video example of the noise exhibited by our
system while the user’s head is not moving can be
seen at https://www.youtube.com/edit?o=U&
video_id=u1tGTq_NJwU.
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